Daily Schedule for MATH 4340

Monday	Tuesday	Wednesday	Thursday	Friday
		Welcome and course overview	13	(32:49) 14 Lecture 1.1 Vector spaces
No class: MLK Day	18	(46:33) 19 Lecture 1.2 Linear independence \& spanning sets	20	(41:08) Lecture 1.3 Linear maps
				HW 1 due
(47:46) Lecture 1.4 Inner products \& orthogonality	25	(45:07) 26 Lecture 2.1 The fundamental theorem of linear ODEs	27	(39:35) Lecture 2.2 Linear independence and the Wronskian HW 2 due

February

Monday	Tuesday	Wednesday	Thursday	Friday
(37:53) Lecture 2.3 Inhomogeneous ODEs \& affine spaces	2	(45:51) Lecture 2.4 Undetermined coefficients	4	(44:24) Lecture 2.5 Power series solutions to ODEs HW 3 due
(43:21) Lecture 2.6 Singular points \& the Frobenius method	9	(36:34) 10 Lestures 2.7 Bessel's equation	11	(29:29) Lecture 3.1 Fourier series and orthogonality HW 4 due
(50:09) Lecture 3.2 Computing Fourier series \& exploiting symmetry	16	MIDTERM 1	18	(31:48) Lecture 3.3 Solving ODEs with Fourier series
(35:07) 22 Lecture 3.4 Fourier sine and cosine series	23	(51:14) Lecture 3.5 Complex inner products \& Fourier series	25	(37:03) 26 Lecture 3.6 Real vs. complex Fourier seires HW 5 due

March

Monday	Tuesday	Wednesday	Thursday	Friday
(49:37) $\quad \mathbf{L e c t u r e ~} 3.7$ Fourier transforms	2	(31:32) Lecture 3.8 Pythagoras, Parseval, and Plancherel	4	(56:59) Lecture 4.1 Boundary value problems HW 6 due
(32:46) Lecture 4.2 Symmetric and Hermitian matrices	9	(46:44) Lecture 4.3 Self-adjoint linear operators	11	(42:30) Lecture 4.4 Sturm-Liouville theory HW 7 due
(26:12) Lecture 4.5 Generalized Fourier series	16	MIDTERM 217	18	(35:43) Lecture 4.6 Some special orthogonal functions HW 8 due
SPRING BREAK ${ }^{22}$	23	$\text { SPRING BREAK } 24$	25	$\begin{gathered} (35: 43) \\ \text { SPRING BREAK } \end{gathered}$
(44:28) 28 Lecture 5.1 Boundary conditions for the heat equation	29	(51:23) 30 Lecture 5.2 Boundary conditions for the heat equation	31	(40.32) Lecture 5.3 The transport and wave equations HW 9 due

April

Monday	Tuesday	Wednesday	Thursday	Friday
(31:04) Lecture 5.4 The Schrödinger equation	5	(48:39) Lecture 6.1 The heat \& wave equations on the real line	7	(42:05) Lecture 6.2 Semi-infinite domains \& the reflection method HW 10 due
(42:03) Lecture 6.3 Solving PDEs with Laplace transforms	12	(44:28) Lecture 6.4 Solving PDEs with Fourier transforms	14	(53:53) Lecture 7.1 Harmonic functions and Laplace's equation HW 11 due
(29:06) 18 Lecture 7.2 Eigenfunctions of the Laplacian	19	(54:04) 20 Lecture 7.3 The heat and wave equations in higher dimensions	21	- MIDTERM 3 HW 12 due
(51:53) 25 Lecture 7.4 The Laplacian in polar coordinates	26	(48:02) 27 Lecture 7.5 Three PDEs on a disk	28	29 Study day HW 13 due

