1. In this problem, we will investigate 2-cycles in the logistic map $f(x)=r x(1-x)$.
(a) The presence of a two cycle p, q, p, q, \ldots means that p is a fixed point of $f^{2}(x):=$ $f(f(x))$, and hence a root of the polynomial $f^{2}(x)-x=0$.
(b) The fixed points of the logistic map, $x^{*}=0$ and $x^{*}=\frac{r-1}{r}$, are both roots of this polynomial. Therefore,

$$
f^{2}(x)=x\left(x-\frac{r-1}{r}\right) g(x) .
$$

Find $g(x)$ (feel free to use a computer) and its roots.
(c) Determine for what values of r give rise to a 2-cycle, with justification.
(d) The two cycle p, q, p, q, \ldots of f is stable if p and q are stable fixed points for f^{2}. Compute

$$
\lambda:=\frac{d}{d x}\left(f^{2}(x)\right)_{x=p} .
$$

Then substibute r back in, and determine when $|\lambda|<1$. This gives the values of r for which the 2-cycle is stable.
2. Consider the following instance of the discrete logistic equation:

$$
P_{t+1}=P_{t}\left(1+r\left(1-P_{t} / M\right)\right)
$$

Find the two equilibirum points, P^{*}. Use the technique of linearization to find the stability of these points. That is, plug $P_{t} \approx P^{*}+p_{t}$ and $P_{t+1} \approx P^{*}+p_{t+1}$ into the difference equation and express the perturbation p_{t+1} in terms of p_{t}, disregarding the non-linear terms.
3. The discrete logistic and the Ricker population models when written as $P_{t+1}=F\left(P_{t}\right)$ have the property that for small values of P_{t}, the graph of $F(x)$ lies above the line $y=x$ This means that $F\left(P_{t}\right)>P_{t}$ for small value of P_{t}. Consider a model for which $F\left(P_{t}\right)<P_{t}$ for small values of P_{t}. Explain the affect of this feature on population dynamics. Why might this be a biologically important feature? (The resulting behavior is sometimes known as an Allee effect.)
4. Construct a simple model showing an Allee effect as follows.
(a) Explain why for some $0<L<K$, the per-capita growth should be

$$
\begin{aligned}
& \frac{\Delta P}{P}<0, \text { when } 0<P<L \text { or } P>K, \\
& \frac{\Delta P}{P}>0, \text { when } L<P<K
\end{aligned}
$$

Sketch a possible graph of $\Delta P / P$ vs. P.
(b) Explain why $\Delta P / P=P(K-P)(P-L)$ has the qualitative features desired.
(c) Investigate the resulting model using the MATLAB programs onepop and cobweb (available on the Math 4500 webpage) for some choices of K and L. Print out, or sketch the results of a few sample trials. Is the behavior as expected?
(d) What features of this modeling equation are unrealistic? How might the model be improved?

