Read: Chapter 2.3: Modeling biochemical reactions with differential equations, by R. Robeva, and N. Yildirim. pages 40-46.

1. Consider the reactions where two substrates $S$ and $T$ compete for binding to an enzyme $E$ to produce two different products $P$ and $Q$ :

$$
\begin{aligned}
& E+S \underset{p_{2}}{\stackrel{p_{1}}{\rightleftharpoons}} E S \xrightarrow{\stackrel{p_{3}}{\longrightarrow}} P+E \\
& E+T \underset{q_{2}}{\stackrel{q_{1}}{\rightleftharpoons}} E T \xrightarrow{q_{3}} Q+E
\end{aligned}
$$

Assume that each reaction follows the Michaelis-Menten kinetics. Also, assume that that the initial enzyme concentration is $E_{0}=[E]+[E S]+[E T]$.
(a) Derive rate equations for $P$ and $Q$ in this system in terms of $[E S]$ and $[E T]$. That is, determine $d[P] / d t$ and $d[Q] / d t$.
(b) Derive rate equations for $E S$ and $E T$.
(c) Assume that the enzyme-substrate complexes reach equilibrium quickly: $d[E S] / d t \approx$ 0 and $d[E T] / d t \approx 0$. Solve for $[E]$ in each of these equations.
(d) Equate the two expressions for $[E]$ from Part (c) and solve for $[E T]$.
(e) Solve for $[E S]$ by plugging your answers to Parts (c) and (d) into $E_{0}=[E]+[E S]+$ $[E T]$. You should not have $[E]$ or $[E T]$ in your final answer.
(f) Plug this into the original ODE for $d[P] / d t$.
(g) Repeat the previous three steps but solve for $[E S]$ instead of $[E T]$.
(h) Explain the effects of the competition occuring.
2. The Hill equation is an approximation for multi-molecule binding and it assumes simultaneous binding of $n$-moecules of a substrate $S$ to the enzyme $E$. Suppose that two molecules of the substrate $S$ are undergoing a reaction with an enzyme in an ordered manner as follows:

$$
E+S \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} E S+S \underset{k_{4}}{\stackrel{k_{3}}{\rightleftharpoons}} E S_{2} \xrightarrow{k_{5}} P+E .
$$

Assume that the reaction follows the Michaelis-Menten kinetics and that the initial enzyme concentration is $E_{0}=[E]+[E S]+\left[E S_{2}\right]$.
(a) Derive rate equations for $P, E S$, and $E S_{2}$. Be very careful with the $E S \xrightarrow{k_{2}} E+S$ reaction when deriving the equation for $[E S]$.
(b) Assume that $d\left[E S_{2}\right] / d t \approx 0$ and solve for $[E S]$.
(c) Assume that $d[E S] / d t \approx 0$. Plug your answer to Part (b) into this and solve for $[E]$.
(d) Plug your expressions for $[E]$ and $[E S]$ back into $E_{0}=[E]+[E S]+\left[E S_{2}\right]$ and solve for $\left[E S_{2}\right]$.
(e) Derive an ODE for $[P]$ of the form $d[P] / d t=f([S])$.
(f) Compare your answer to Part (d) to the Hill equation with Hill coefficient $n=2$ :

$$
\frac{d[P]}{d t}=\frac{V_{\max }[S]^{2}}{K_{m}+[S]^{2}}
$$

When do these two equations become roughly the same?

