Difference Equations

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4500, Spring 2022

Motivation: Population dynamics

Consider a population of insects that reproduces daily, of size $P(t)$:

- birth rate is $f \in[0, \infty)$,
- death rate is $d \in[0,1]$.

This can be modeled by a simple equation:

$$
\Delta P=f P-d P=(f-d) P .
$$

Suppose time is discretized, e.g., it only takes integer values: $t=0,1,2, \ldots$.
Let $P_{t}=P(t)=$ population at time t.
Then $\Delta P=P_{t+1}-P_{t}$, from which it follows that

$$
P_{t+1}=P_{t}+\Delta P=P_{t}+(f-d) P_{t}=(1+f-d) P_{t} .
$$

Letting $\lambda=1+f-d$ (the "finite growth rate"), we can write this as $P_{t+1}=\lambda P_{t}$.

An example

Consider a population of insects that reproduces daily, with the following parameters:

- initial population $P_{0}=300$,
- birth rate $f=.03$,
- death rate $d=.01$.

Then the finite growth rate is $\lambda=1+f-d=1.02$, and

$$
\begin{aligned}
& P_{1}=(1.02) P_{0} \\
& P_{2}=(1.02) P_{1}=(1.02)^{2} P_{0} \\
& P_{3}=(1.02) P_{2}=(1.02)^{3} P_{0}
\end{aligned}
$$

It is not difficult to see the closed-form solution $P_{t}=\lambda^{t} P_{0}$. This is called exponential growth.

What is a difference equation?

Definition

Let Q be a quantity defined for all $t \in \mathbb{N}$, such that $Q_{t+1}=F\left(Q_{t}\right)$, for some function F.

In the previous example: $F(x)=\lambda x$. This is called the Malthusian model. It is a linear difference equation because $F(x)$ is linear.

Let's compare difference equations to differential equations:

- Difference equations are discrete time, continuous space.

■ Differential equations are continuous time, continuous space.

Exercise

Can you think of a model that is discrete time and discrete space? Or continuous time and discrete space?

Which type of model to use?

Broad goals

- Find an appropriate model.
- Analyze models that naturally arise.

For example, consider the following three problems to be modeled:

1. Let P be a population of $P_{0}=300$ insects with birth rate $f=.03$ and death rate $d=.01$.
2. Let P be the value of an initial investment of $P_{0}=300$ dollars with fixed 2% interest rate, i.e., $\lambda=1.02$.
3. Let P be a mass of a population of bacteria that is initially $P_{0}=300$ grams, with growth rate insects with finite growth rate $\lambda=1.02$.

Exercise

Which of these are more suited for difference equations, and which for differential equations?

Logistic equation for population growth

Realistically, a population's growth rate isn't constant - it depends on size. ("density dependent").

Big idea

Analyze $\Delta P / P=$ per capita growth rate.

- P small: $\frac{\Delta P}{P}$ large.
- P large: $\frac{\Delta P}{P}$ small.
- P too large: $\frac{\Delta P}{P}<0$.

Assumptions:
■ Let r be the growth rate when $P=0$. [Technically, $r=\lim _{P \rightarrow 0^{+}} \frac{\Delta P}{P}$.] This is called the finite intrinsic growth rate.

- Let M be the population for which $\frac{\Delta P}{P}=0$. This is called the carrying capacity.

■ Suppose the growth rate decreases linearly with P.

Logistic equation for population growth

Since the growth rate decreases linearly with P, basic algebra gives

$$
\frac{\Delta P}{P}=-\frac{r}{M} P+r=r\left(1-\frac{P}{M}\right)
$$

Logistic equation for population growth

Substituting $\Delta P=P_{t+1}-P_{t}$ into $\frac{\Delta P}{P}=r\left(1-\frac{P}{M}\right)$, followed by easy algebra yields the discrete logistic model:

$$
P_{t+1}=P_{t}\left(1+r\left(1-\frac{P_{t}}{M}\right)\right)
$$

Model validation

To see if this model is reasonable, the first thing to check are some simple cases:
■ $P \ll M \Longrightarrow 1-\frac{P}{M} \approx 1 \Longrightarrow P_{t+1} \approx(1+r) P_{t}$. [Exponential growth!]

- $P \approx M \Longrightarrow 1-\frac{P}{M} \approx 0 \Longrightarrow P_{t+1} \approx P_{t}$.

Exercise

What is $F(x)$ in the discrete logistic model? [It must satisfy $P_{t+1}=F\left(P_{t}\right)$.]

Solutions of difference equations

Difference equations, though simiple, often have no closed form solution for P_{t}.
However, we can plot the solutions for various initial values P_{0}.
Here are some solutions to the equation $P_{t+1}=P_{t}+.2 P_{t}\left(1-\frac{P_{t}}{10}\right)$.

Cobwebbing

Consider the difference equation $\Delta P=0.8 P_{t}\left(1-\frac{P_{t}}{10}\right)$. Or equivalently, $P_{t+1}=F\left(P_{t}\right)=P_{t}+0.8 P_{t}\left(1-\frac{P_{t}}{10}\right)$.

We can numerically find $P_{0}, P_{1}, P_{2}, \ldots$ by plotting $F(x)=x+0.8 x\left(1-\frac{x}{10}\right)$ and $y=x$ on the same axes, and then by "cobwebbing":

Cobwebbing

Consider another difference equation: $\Delta P=1.8 P_{t}\left(1-\frac{P_{t}}{10}\right)$. Or equivalently, $P_{t+1}=F\left(P_{t}\right)=P_{t}+1.8 P_{t}\left(1-\frac{P_{t}}{10}\right)$.

Cobwebbing

Questions

1. Sketch a plot of several solution curves $P(t)$ for the difference equations in the previous two examples.
2. What does the spiraling behavior of this cobweb imply about the population $P(t)$?
3. How does this relate to mass-spring systems? [Hint: Think about damping.]
4. What features about a population are highlighted in the logistic equation using difference equations that do not arise using differential equations?
