Boolean models of the *lac* operon in *E. coli*

Matthew Macauley Clemson University

The lac operon

Downsides of an ODE model

- Very mathematically technical.
- Too hard to solve explicitly. Numerical methods are needed.
- MANY experimentally determined "rate constants" (I count 22...)
- Often, these rate constants aren't known even up to orders of magnitude.

$$\frac{dM}{dt} = \alpha_M \frac{1 + K_1 \left(e^{-\mu\tau_M} A_{\tau_M}\right)^n}{K + K_1 \left(e^{-\mu\tau_M} A_{\tau_M}\right)^n} + \Gamma_0 - \widetilde{\gamma_M} M$$

$$\frac{dB}{dt} = \alpha_B e^{-\mu\tau_B} M_{\tau_B} - \widetilde{\gamma_B} B$$

$$\frac{dA}{dt} = \alpha_A B \frac{L}{K_L + L} - \beta_A B \frac{A}{K_A + A} - \widetilde{\gamma_A} A$$

$$\frac{dP}{dt} = \alpha_P e^{-\mu(\tau_B + \tau_P)} M_{\tau_B + \tau_P} - \widetilde{\gamma_P} P$$

$$\frac{dL}{dt} = \alpha_L P \frac{L_e}{K_{L_e} + L_e} - \beta_{L_1} P \frac{L}{K_{L_1} + L} - \alpha_A B \frac{L}{K_L + L} - \widetilde{\gamma_L} L$$

A Boolean approach

- Let's assume everything is "Boolean" (0 or 1):
 - Gene products are either present or absent
 - Enzyme concentrations are either high or low.
 - The operon is either ON or OFF.

 mRNA is transcribed (M=1) if there is no external glucose (G=0), and either internal lactose (L=1) or external lactose (L_e=1) are present.

$$x_M(t+1) = f_M(t+1) = \overline{G_e} \wedge (L(t) \vee L_e)$$

 The LacY and LacZ gene products (E=1) will be produced if mRNA is available (M=1).

 $x_E(t+1) = f_E(t+1) = M(t)$

- Lactose will be present in the cell if there is no external glucose ($G_e=0$), and either of the following holds:
 - ✓ External lactose is present (L_e =1) and *lac* permease (E=1) is available.
 - Internal lactose is present (L=1), but β-galactosidase is absent (E=0).

$$\kappa_{L}(t+1) = f_{L}(t+1) = \overline{G_{e}} \wedge \left[(L_{e} \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right]$$

Comments on the Boolean model

- We have two "types" of Boolean quantities:
 - o mRNA (M), lac gene products (E), and internal lactose (L) are variables.
 - \circ External glucose (G_e) and lactose (L_e) are parameters (constants).
- Variables and parameters are drawn as **nodes**.
- Interactions can be drawn as signed edges.
- A signed graph called the wiring diagram describes the dependencies of the variables.
- Time is discrete: t = 0, 1, 2,

 $\begin{aligned} x_M(t+1) &= f_M(t+1) = \overline{G_e} \wedge (L(t) \vee L_e) \\ x_E(t+1) &= f_E(t+1) = M(t) \end{aligned}$ $\begin{aligned} x_L(t+1) &= f_L(t+1) = \overline{G_e} \wedge \left[(L_e \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right] \end{aligned}$

Assume that the variables are updated synchronously.

How to analyze a Boolean model

- At the bare minimum, we should expect:
 - Lactose absent => operon OFF.
 - Lactose present, glucose absent => operon ON.
 - Lactose and glucose present => operon OFF.

$$\begin{aligned} x_M(t+1) &= f_M(t+1) = \overline{G_e} \wedge (L(t) \vee L_e) \\ x_E(t+1) &= f_E(t+1) = M(t) \\ x_L(t+1) &= f_L(t+1) = \overline{G_e} \wedge \left[(L_e \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right] \end{aligned}$$

- The state space (or phase space) is the directed graph (V, T), where $V = \left\{ (x_M, x_E, x_L) : x_i \in \{0, 1\} \right\} \qquad T = \left\{ (x, f(x)) : x \in V \right\}$
- We'll draw the state space for all four choices of the parameters:
 - o $(L_e, G_e) = (0, 0)$. We hope to end up in a fixed point (0,0,0).
 - $(L_e, G_e) = (0, 1)$. We hope to end up in a fixed point (0,0,0).
 - o $(L_e, G_e) = (1, 0)$. We hope to end up in a fixed point (1,1,1).
 - o $(L_e, G_e) = (1, 1)$. We hope to end up in a fixed point (0,0,0).

How to analyze a Boolean model

- We can plot the state space using several software packages:
 - The "Cyclone" software package: at <u>http://cyclone.algorun.org/</u>.
 - The BoolNet library in R.
- For Cyclone, we need to convert our logical functions into polynomials.

$$\begin{aligned} x_M(t+1) &= f_M(t+1) = \overline{G_e} \wedge (L(t) \vee L_e) \\ x_E(t+1) &= f_E(t+1) = M(t) \\ x_L(t+1) &= f_L(t+1) = \overline{G_e} \wedge \left[(L_e \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right] \end{aligned}$$

Here is the relationship between Boolean logic and polynomial algebra:

	Boolean operations	logical form	polynomial form
0	AND	$z = x \land y$	z = xy
0	OR	$z = x \lor y$	z = x + y + xy
0	NOT	$z = \overline{x}$	z = 1 + x

Everything is modulo 2, so 1+1=0, and 1=-1, and $x^2=x$, and thus x(x+1)=0.

Run

Calculate Dynamics of a discrete dynamical system using exhaustive search

More Information: https://github.com/PlantSimLab/cyclone

Packaged by: Abdelrahman Hosny

Reinhard Laubenbacher (PI) Center for Quantitative Medicine

$$\begin{aligned} x_M(t+1) &= f_M(t+1) = \overline{G_e} \wedge (L(t) \vee L_e) \\ x_E(t+1) &= f_E(t+1) = M(t) \\ x_L(t+1) &= f_L(t+1) = \overline{G_e} \wedge \left[(L_e \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right] \end{aligned}$$

input		outp	ut visualization
1	MODEL NAME: 3-variable lac operon model	1	digraph test {
2	SIMULATION NAME: Lactose but not glucose	2	node0 [label=" 0 0 0"];
3	NUMBER OF VARIABLES: 3	3	node1 [label=" 0 0 1"];
4	VARIABLE NAMES: x1 x2 x3	4	node2 [label=" 0 1 0"];
5	NUMBER OF STATES: 2 2 2	5	node3 [label=" 0 1 1"];
6	SPEED OF VARIABLES: 1 1 1	6	node4 [label=" 1 0 0"];
7		7	node5 [label=" 1 0 1"];
8	f1 = 1	8	node6 [label=" 1 1 0"];
9	f2 = x1	9	node7 [label=" 1 1 1"];
10	f3 = x2 + x3 + x2*x3	10	node0 -> node0
		11	node1 -> node5
		12	node2 -> node1
		13	node3 -> node5
		14	node4 -> node2
		15	node5 -> node7
		16	node6 -> node3
		17	node7 -> node7
		18	}
		19	

Calculate Dynamics of a discrete dynamical system using exhaustive search

More Information: https://github.com/PlantSimLab/cyclone

Packaged by: Abdelrahman Hosny

$$x_{M}(t+1) = f_{M}(t+1) = \overline{G_{e}} \wedge (L(t) \vee L_{e})$$

$$x_{E}(t+1) = f_{E}(t+1) = M(t)$$

$$x_{L}(t+1) = f_{L}(t+1) = \overline{G_{e}} \wedge \left[(L_{e} \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right]$$

$$100 \quad 001 \quad 010 \quad 011$$

$$110 \quad 101 \quad 011$$

State space when $(G_e, L_e) = (0, 1)$. The operon is ON.

Reinhard Laubenbacher (PI) Center for Quantitative Medicine

Authors

Calculate Dynamics of a discrete dynamical system using exhaustive search More Information: https://github.com/PlantSimLab/cyclone

Packaged by: Abdelrahman Hosny

$$\begin{aligned} x_M(t+1) &= f_M(t+1) = \overline{G_e} \wedge (L(t) \vee L_e) \\ x_E(t+1) &= f_E(t+1) = M(t) \\ x_L(t+1) &= f_L(t+1) = \overline{G_e} \wedge \left[(L_e \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right] \end{aligned}$$

State space when $(G_e, L_e) = (0, 0)$.

The operon is OFF.

Cyclone

Calculate Dynamics of a discrete dynamical system using exhaustive search

More Information: https://github.com/PlantSimLab/cyclone

Packaged by: Abdelrahman Hosny

 $\begin{aligned} x_M(t+1) &= f_M(t+1) = G_e \wedge (L(t) \vee L_e) \\ x_E(t+1) &= f_E(t+1) = M(t) \\ x_L(t+1) &= f_L(t+1) = \overline{G_e} \wedge \left[(L_e \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right] \end{aligned}$

State space when $(G_e, L_e) = (1, 0)$. The operon is OFF.

Cyclone

Calculate Dynamics of a discrete dynamical system using exhaustive search

More Information: https://github.com/PlantSimLab/cyclone

Packaged by: Abdelrahman Hosny

 $\begin{aligned} x_M(t+1) &= f_M(t+1) = G_e \wedge (L(t) \vee L_e) \\ x_E(t+1) &= f_E(t+1) = M(t) \\ x_L(t+1) &= f_L(t+1) = \overline{G_e} \wedge \left[(L_e \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right] \end{aligned}$

State space when $(G_e, L_e) = (1, 1)$. The operon is OFF.

Summary so far

- Gene regulatory networks consist of a collection of gene products that interact with each other to control a specific cell function.
- Classically, these have been modeled quantitatively with differential equations (continuous models).
- Boolean models take a different approach. They are discrete models that are inherently qualitative.
- The state space graph encodes all the dynamics. The most important features are the fixed points, and a necessary step in model validation is to check that they are biologically meaningful.
- The model of the *lac* operon shown here is a "toy model". Next, we will see more complicated models of the *lac* operon that capture intricate biological features of these systems.
- Modeling with Boolean logic is a relatively new concept, first done in the 1970s. It is a popular research topic in the field of systems biology.

A more refined model

- Our first model only used 3 variables: mRNA (M), enzymes (E), and lactose (L).
- Let's propose a new model with 5 variables:
 - M: mRNA
 - B: β-galactosidase
 - A: allolactose
 - L: intracellular lactose
 - P: *lac* permease (transporter protein)
- Assumptions
 - Extracellular lactose is always available.
 - Extracellular glucose is always unavailable.
 - Translation and transcription require one unit of time.
 - Protein and mRNA degradation require one unit of time
 - Lactose metabolism require one unit of time

$$\begin{split} f_M &= A \\ f_B &= M \\ f_A &= A \lor (L \land B) \\ f_L &= P \lor (L \land \overline{B}) \\ f_P &= M \end{split}$$

Using Macaulay2 to generate polynomials

- Let's see how to analyze this model two ways:
 - Using "Cyclone" in AlgoRun (polynomial algebra)
 - Using BoolNet in R
- For Cyclone, we need to convert these into polynomials.

 $f_{M} = A$ $f_{B} = M$ $f_{A} = A \lor (L \land B)$ $f_{L} = P \lor (L \land \overline{B})$ $f_{P} = M$

- It will be convenient to do this using a software package.
- We'll use Macaulay2, an open-source computational algebra package that can be run online: <u>http://www2.macaulay2.com/Macaulay2/</u>
- Here's how to use Macaulay2 to turn these functions into polynomials:

Q = ZZ/2[M,B,A,L,P] / ideal(M^2-M,B^2-B,A^2-A,L^2-L,P^2-P)
RingElement | RingElement :=(x,y)->x+y+x*y;
RingElement & RingElement :=(x,y)->x*y;
fM = A;
fB = M;
fA = A | (L & B);
fL = P | (L & (1+B));
fP = M;
(fM, fB, fA, fL, fP)

Using Cyclone to compute the state space

Using BoolNet in R to compute the state space

📄 lac-operon 🗙 👝 🗖	
1 targets, factors	
2 M, A 3 R M	
4 A, A I (L & B)	
5 L, P I (L & !B)	<pre>> lacModel <- loadNetwork("lac-operon")</pre>
6 P, M	> lacAttractors <= aetAttractors(lacModel)
7.1 Tavt Filo A	
	> plotStateGraph(lacAttractors)
Console Terminal ×	>
~/code/BoolNet/ @	
<pre>> lacModel <- loadNetwork(lac-operon) > aetAttractors(lacModel)</pre>	9
Attractor 1 is a simple attractor consisting of 1 state(s) and has a basin of 2 state(s):	
	2
V I	
00000	14
V I	
>	0 De
Genes are encoded in the following order: M B A L P	
Attractor 2 is a simple attractor consisting of 1 state(s) and has a basin of 6 state(s):	
<	
	o The
V	
>	
	ī
Genes are encoded in the following order: M B A L P	
	0- M
Attractor 3 is a simple attractor consisting of 1 state(s) and has a basin of 24 state(s):	o l
<	
V I	
>	Attractor 1
	Attractor 3
Conos ano operadod in the following order: M.P.A.L.D.	
denes are encoded in the following order. M D A L P	

Problems with our refined model

- Model variables:
 - M: mRNA
 - B: β-galactosidase
 - A: allolactose
 - L: intracellular lactose
 - P: *lac* permease (transporter protein)
- Problems:
 - The fixed point (M,B,A,L,P) = (0,0,0,0,0) should not happen with lactose present but not glucose. [though let's try to justify this...]
 - The fixed point (M,B,A,L,P) = (0,0,0,1,0) is not biologically feasible: it would describe a scenario where the bacterium does not metabolize intracellular lactose.
- <u>Conclusion</u>: The model fails the initial testing and validation, and is in need of modification. (Homework!)

 $f_{M} = A$ $f_{B} = M$ $f_{A} = A \lor (L \land B)$ $f_{L} = P \lor (L \land \overline{B})$ $f_{P} = M$