Advanced Boolean models of the lac operon

Matthew Macauley
Clemson University

The lac operon

A 9-variable model

- Variables:
- M: mRNA
- P: lac permease
- B: β-galactosidase
- C: catabolite activator protein (CAP)
- R: repressor protein (Lacl)
- A: high allolactose
- A_{m} : at least med. allolactose
- L: high (intracellular) lactose
- L_{m} : at least med. levels of lactose

- Assumptions:
- Transcription and translation require 1 unit of time.
- Degradation of all mRNA and proteins occur in 1 time-step.
- High levels of lactose or allolactose at any time t imply (at least) medium levels for the next time-step $t+1$.

A 9-variable model

$$
\begin{aligned}
& f_{M}=\bar{R} \wedge C \\
& f_{P}=M \\
& f_{B}=M \\
& f_{C}=\overline{G_{e}} \\
& f_{R}=\bar{A} \wedge \overline{A_{m}} \\
& f_{A}=L \wedge B \\
& f_{A_{m}}=A \vee L \vee L_{m} \\
& f_{L}=\overline{G_{e}} \wedge P \wedge L_{e} \\
& f_{L_{m}}=\overline{G_{e}} \wedge\left(L \vee L_{e}\right)
\end{aligned}
$$

What if the state space is too big?

- The previous 9-variable model is about as big as Cyclone can handle. $f_{M}=\bar{R} \wedge C$
- However, many gene regulatory networks are much bigger.
- A Boolean network model (2006) of T helper cell differentiation has 23 nodes, and thus a state space of size $2^{23}=8,388,608$.
$f_{P}=M$
$f_{B}=M$
$f_{C}=\overline{G_{e}}$
- A Boolean network model (2003) of the segment polarity genes in Drosophila melanogaster (fruit fly) has 60 nodes, and a state space of size $2^{60} \approx 1.15 \times 10^{18}$.
$f_{R}=\bar{A} \wedge \overline{A_{m}}$
$f_{A}=L \wedge B$
- There are many more examples...
$f_{A_{m}}=A \vee L \vee L_{m}$
- For these systems, we need to be able to analyze them without constructing the entire state space.

$$
f_{L}=\overline{G_{e}} \wedge P \wedge L_{e}
$$

$$
f_{L_{m}}=\overline{G_{e}} \wedge\left(L \vee L_{e}\right)
$$

- Our first goal is to find the fixed points. This amounts to solving a system of equations:

$$
\left\{\begin{array}{c}
f_{x_{1}}=x_{1} \\
f_{x_{2}}=x_{2} \\
\vdots \\
f_{x_{n}}=x_{n}
\end{array}\right.
$$

How to find the fixed points

- Let's rename variables: $\left(M, P, B, C, R, A, A_{m}, L, L_{m}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)$
- Writing each function in polynomial form, and then $f_{x_{i}}=\boldsymbol{X}_{\boldsymbol{i}}$ for each $\mathrm{i}=1, \ldots, 9$ yields the following system:
$f_{M}=\bar{R} \wedge C=M$
$f_{P}=M=P$
$f_{B}=M=B$
$f_{C}=\overline{G_{e}}=C$
$f_{R}=\bar{A} \wedge \overline{A_{m}}=R$
$f_{A}=L \wedge B=A$
$f_{A_{m}}=A \vee L \vee L_{m}=A_{m}$
$f_{L}=\overline{G_{e}} \wedge P \wedge L_{e}=L$
$f_{L_{m}}=\overline{G_{e}} \wedge\left(L \vee L_{e}\right)=L_{m}$

$$
\left\{\begin{array}{l}
x_{1}+x_{4} x_{5}+x_{4}=0 \\
x_{1}+x_{2}=0 \\
x_{1}+x_{3}=0 \\
x_{4}+\left(G_{e}+1\right)=0 \\
x_{5}+x_{6} x_{7}+x_{6}+x_{7}+1=0 \\
x_{6}+x_{3} x_{8}=0 \\
x_{6}+x_{7}+x_{8}+x_{9}+x_{8} x_{9}+x_{6} x_{8}+x_{6} x_{9}+x_{6} x_{8} x_{9}=0 \\
x_{8}+x_{2} L_{e}\left(G_{e}+1\right)=0 \\
x_{9}+\left(G_{e}+1\right)\left(x_{8}+x_{8} L_{e}+L_{e}\right)=0
\end{array}\right.
$$

We need to solve this for all 4 combinations: $\left(G_{e}, L_{e}\right)=(0,0),(0,1),(1,0),(1,1)$

How to find the fixed points with Macaulay2

- Let's first consider the case when $\left(G_{e}, L_{e}\right)=(0,1)$
- We can solve the system by typing the following commands into Macaulay2 an open-source software package for computational algebraic geometry:

```
-- Define a ring of polynomials in 9 variables.
R = ZZ/2[x1,x2,x3,x4,x5,x6,x7,x8,x9];
-- Define a quotient ring, where each x_i^2 = x_i.
I = ideal (x1^ 2-x1, x2^2-x2, x 3 ^ 2-x3, x4^2-x4, x5 ^ 2-x5, x6^2-x6, x7^2-x7, x8^2-x8, x9^2-x9);
Q = R / I;
-- Shortcut for AND and OR functions.
RingElement | RingElement :=(x,y)->x+y+x*y;
RingElement & RingElement :=( x,y)->x*y;
-- Set the parameters (constants).
Ge = 0_Q
Le = 1_Q
-- This is the 9-variable lac operon model.
f1 = (1+x5) & x4;
f2 = x1;
f3 = x1;
f4 = 1+Ge;
f5 = (1+x6) & (1+x7);
f6 = x8 & x3;
f7 = x6 | x8 | x9;
f8 = (1+Ge) & x2 & Le;
f9 = (1+Ge) & (x8 | Le);
-- Compute the ideal to find the fixed point(s).
I = ideal(f1+x1, f2+x 2, f3+x 3, f4+x4, f5 +x 5, f6+x6, f7+x7, f8+x8, f9+x9)
-- Compute a Groebner basis.
G = gens gb I
```


What does this code mean?

The output of $\mathbf{G}=$ Gens $\mathbf{g b} \mathbf{I}$; is the following:

$$
|x 9+1, x 8+1, x 7+1, x 6+1, x 5, x 4+1, x 3+1, x 2+1, x 1+1|
$$

This is short-hand for the following system of equations:

$$
x_{9}+1=0, x_{8}+1=0, \ldots, x_{4}+1=0, x_{5}=0, x_{3}+1=0, \ldots, x_{1}+1=0
$$

This simple system has the same set of solutions as the much more complicated system we started with:

$$
\left\{\begin{array}{l}
x_{1}+x_{4} x_{5}+x_{4}=0 \\
x_{1}+x_{2}=0 \\
x_{1}+x_{3}=0 \\
x_{4}+\left(G_{e}+1\right)=0 \\
x_{5}+x_{6} x_{7}+x_{6}+x_{7}+1=0 \\
x_{6}+x_{3} x_{8}=0 \\
x_{6}+x_{7}+x_{8}+x_{9}+x_{8} x_{9}+x_{6} x_{8}+x_{6} x_{9}+x_{6} x_{8} x_{9}=0 \\
x_{8}+x_{2} L_{e}\left(G_{e}+1\right)=0 \\
x_{9}+\left(G_{e}+1\right)\left(x_{8}+x_{8} L_{e}+L_{e}\right)=0
\end{array}\right.
$$

What does a Gröbner basis tell us?

The output of $\mathbf{G}=$ Gens $\mathrm{gb} \mathbf{I}$; is the following:

$$
|x 9+1, x 8+1, x 7+1, x 6+1, x 5, x 4+1, x 3+1, x 2+1, x 1+1|
$$

This is short-hand for the following system of equations:

$$
x_{9}+1=0, x_{8}+1=0, \ldots, x_{4}+1=0, x_{5}=0, x_{3}+1=0, \ldots, x_{1}+1=0
$$

This simple system has the same set of solutions as the much more complicated system we started with:

$$
\left\{\begin{array}{l}
x_{1}+x_{4} x_{5}+x_{4}=0 \\
x_{1}+x_{2}=0 \\
x_{1}+x_{3}=0 \\
x_{4}+\left(G_{e}+1\right)=0 \\
x_{5}+x_{6} x_{7}+x_{6}+x_{7}+1=0 \\
x_{6}+x_{3} x_{8}=0 \\
x_{6}+x_{7}+x_{8}+x_{9}+x_{8} x_{9}+x_{6} x_{8}+x_{6} x_{9}+x_{6} x_{8} x_{9}=0 \\
x_{8}+x_{2} L_{e}\left(G_{e}+1\right)=0 \\
x_{9}+\left(G_{e}+1\right)\left(x_{8}+x_{8} L_{e}+L_{e}\right)=0
\end{array}\right.
$$

Gröbner bases vs. Gaussian elimination

« Gröbner bases are a generalization of Gaussian elimination, but for systems of polynomials (instead of systems of linear equations)

४ In both cases:

- The input is a complicated system that we wish to solve.
- The output is a simple system that we can easily solve by inspection.
> Consider the following example:
- Input: The 2×2 system of linear equations

$$
\left\{\begin{array}{c}
x+2 y=1 \\
3 x+8 y=1
\end{array}\right.
$$

- Gaussian elimination yields the following:

$$
\left[\begin{array}{ll|l}
1 & 2 & 1 \\
3 & 8 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll|c}
1 & 2 & 1 \\
0 & 2 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & 0 & 3 \\
0 & 2 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & 0 & 3 \\
0 & 1 & -1
\end{array}\right]
$$

- This is just the much simpler system with the same solution!

$$
\begin{gathered}
x+0 y=3 \\
0 x+y=-1
\end{gathered}
$$

Back-substitution \& Gaussian elimination

\triangleleft We don't necessarily need to do Gaussian elimination until the matrix is the identity. As long as it is upper-triangular, we can back-substitute and solve by hand.
\triangleleft For example:

$$
\left\{\begin{aligned}
x+z & =2 \\
y-z & =8 \\
0 & =0
\end{aligned}\right.
$$

४ Similarly, when Sage outputs a Gröbner basis, it will be in "upper-triangular form", and we can solve the system easily by back-substituting.
\diamond We'll do an example right away. For this part of the class, you can think of Gröbner bases as a mysterious "black box" that does what we want.
\diamond We'll study them in more detail shortly, and understand what's going on behind the scenes.

Gröbner bases: an example

\triangleleft Let's use Sage to solve the following system:

$$
\begin{array}{r}
x^{2}+y^{2}+z^{2}=1 \\
x^{2}-y+z^{2}=0 \\
x-z=0
\end{array}
$$

17 P.<x,y,z>=PolynomialRing(RR,3,order='lex'); P
Multivariate Polynomial Ring in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ over Real Field with 53 bits of precision

```
I = ideal( (x^2+y^2+z^2-1, x^2-y+z^2, x-z); I
```

 Ideal (\(\left.x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2-1.00000000000000, x^{\wedge} 2-y+z^{\wedge} 2, x-z\right)\) of Multivariate Polynomial
 Ring in \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) over Real Field with 53 bits of precision
 \(B=I\).groebner_basis(); B
 \(\left[x-z, y-2.00000000000000 * z^{\wedge} 2, z^{\wedge} 4+0.500000000000000 * z^{\wedge} 2-0.250000000000000\right]\)
 From this, we get an "upper-triangular" system:
This is something we can solve by hand.

$$
\left\{\begin{array}{r}
x-z=0 \\
y-2 z^{2}=0 \\
z^{4}+.5 z^{2}-.25=0
\end{array}\right.
$$

Gröbner bases: an example (cont.)

\triangleleft To solve the reduced system:

- Solve for z in Eq. 3: $\quad z= \pm \sqrt{\frac{-1+\sqrt{5}}{4}}$

$$
\left\{\begin{array}{r}
x-z=0 \\
y-2 z^{2}=0 \\
z^{4}+.5 z^{2}-.25=0
\end{array}\right.
$$

- Plug z into Eq. 2 and solve for $y: \quad y=2 z^{2}=\frac{-1+\sqrt{5}}{2}$
- Plug y \& z into Eq. 1 and solve for $\mathrm{x}: \quad x=z= \pm \sqrt{\frac{-1+\sqrt{5}}{4}}$
Thus, we get 2 solutions to the original system: $\left\{\begin{array}{r}x^{2}+y^{2}+z^{2}=1 \\ x^{2}-y+z^{2}=0 \\ x-z=0\end{array}\right.$

$$
\left(x_{1}, y_{1}, z_{1}\right)=\left(\sqrt{\frac{-1+\sqrt{5}}{4}}, \frac{-1+\sqrt{5}}{2}, \sqrt{\frac{-1+\sqrt{5}}{4}}\right) \quad\left(x_{2}, y_{2}, z_{2}\right)=\left(-\sqrt{\frac{-1+\sqrt{5}}{4}}, \frac{-1+\sqrt{5}}{2},-\sqrt{\frac{-1+\sqrt{5}}{4}}\right)
$$

Returning to the lac operon

- We have 9 variables: $\left(M, P, B, C, R, A, A_{m}, L, L_{m}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)$
- Writing each function in polynomial form, we need to solve the system $f_{x_{i}}=x_{i}$ for each $i=1, \ldots, 9$, which is the following:
$f_{M}=\bar{R} \wedge C=M$
$f_{P}=M=P$
$f_{B}=M=B$
$f_{C}=\overline{G_{e}}=C$
$f_{R}=\bar{A} \wedge \overline{A_{m}}=R$
$f_{A}=L \wedge B=A$
$f_{A_{m}}=A \vee L \vee L_{m}=A_{m}$
$f_{L}=\overline{G_{e}} \wedge P \wedge L_{e}=A_{m}$
$f_{L_{m}}=\overline{G_{e}} \wedge\left(L \vee L_{e}\right)=L_{m}$

$$
\left\{\begin{array}{l}
x_{1}+x_{4} x_{5}+x_{4}=0 \\
x_{1}+x_{2}=0 \\
x_{1}+x_{3}=0 \\
x_{4}+\left(G_{e}+1\right)=0 \\
x_{5}+x_{6} x_{7}+x_{6}+x_{7}+1=0 \\
x_{6}+x_{3} x_{8}=0 \\
x_{6}+x_{7}+x_{8}+x_{9}+x_{8} x_{9}+x_{6} x_{8}+x_{6} x_{9}+x_{6} x_{8} x_{9}=0 \\
x_{8}+x_{2} L_{e}\left(G_{e}+1\right)=0 \\
x_{9}+\left(G_{e}+1\right)\left(x_{8}+x_{8} L_{e}+L_{e}\right)=0
\end{array}\right.
$$

We need to solve this for all 4 combinations: $\left(G_{e}, L_{e}\right)=(0,0),(0,1),(1,0),(1,1)$ (we already did (1,1)).

Returning to the lac operon

- Again, we use variables $\left(M, P, B, C, R, A, A_{m}, L, L_{m}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)$

$$
\text { and parameters }\left(G_{e}, L_{e}\right)=(0,0)
$$

- Here is the output from Sage:

```
P.<x1,x2,x3,x4,x5,x6,x7,x8,x9> = PolynomialRing(GF(2), 9, order ='lex'); P
    Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2
Le=0; ;
Ge=0;
print "Le =", Le;m
print "Ge =", Ge;
    Le = 0
    Ge=0
I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+1), x5+x6*x7+x6+x7+1, x6+x3*x8,
x6+x7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, x8+Le*(Ge+1)*x2, x9+(Ge+1)*(Le+x8+Le*x8)); I
    Ideal (x1 + x4*x5 + x4, x1 + x2, x1 + x3, x4 + 1, x5 + x6*x7 + x6 + x7 + 1, x3*x8 + x6, x6*x8*x9 +
    x6*x8 + x6*x9 + x6 + x7 + x8*x9 + x8 + x9, x8, x8 + x9) of Multivariate Polynomial Ring in x1, x2
    , x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2
B = I.groebner_basis(); B
    [x1, x2, x3, x4 + 1, x5 + 1, x6, x7, x8, x9]
```

$\left(M, P, B, C, R, A, A_{m}, L, L_{m}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)=(0,0,0,1,1,0,0,0,0)$

Returning to the lac operon

- Again, we use variables $\left(M, P, B, C, R, A, A_{m}, L, L_{m}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)$ and parameters $\left(G_{e}, L_{e}\right)=(1,0)$
- Here is the output from Sage:

```
P. <x1,x2,x3,x4,x5,x6,x7,x8,x9> = PolynomialRing(GF(2), 9, order ='lex'); P
    Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2
```

```
Le=0;
```

Le=0;
Ge=1;
Ge=1;
print "Le =", Le;m
print "Le =", Le;m
print "Ge =", Ge;
print "Ge =", Ge;
Le = 0
Le = 0
Ge=1
Ge=1
I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+1), x5+x6*x7+x6+x7+1, x6+x3*x8,
x6+x7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, x8+Le*(Ge+1)*x2, x9+(Ge+1)*(Le+x8+Le*x8)); I
Ideal (x1 + x4*x5 + x4, x1 + x2, x1 + x3, x4, x5 + x6*x7 + x6 + x7 + 1, x3*x8 + x6, x6*x8*x9 +
x6*x8 + x6*x9 + x6 + x7 + x8*x9 + x8 + x9, x8, x9) of Multivariate Polynomial Ring in x1, x2,
x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2
B = I.groebner_basis(); B
[x1, x2, x3, x4, x5 + 1, x6, x7, x8, x9]

```
\(\left(M, P, B, C, R, A, A_{m}, L, L_{m}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)=(0,0,0,0,1,0,0,0,0)\)

\section*{Returning to the lac operon}
- Again, we use variables \(\left(M, P, B, C, R, A, A_{m}, L, L_{m}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)\)
\[
\text { and parameters }\left(G_{e}, L_{e}\right)=(0,1)
\]
- Here is the output from Sage:
```

P.<x1,x2,x3,x4,x5,x6,x7,x8,x9> = PolynomialRing(GF(2), 9, order ='lex'); P
Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2
Le=0;
Ge=1;
print "Le =", Le;m
print "Ge =", Ge;
Le = 0
Ge = 1
I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+1), x5+x6*x7+x6+x7+1, x6+x3*x8,
x6+x7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, x8+Le*(Ge+1)*x2, x9+(Ge+1)*(Le+x8+Le*x8)); I
Ideal (x1 + x4*x5 + x4, x1 + x2, x1 + x3, x4, x5 + x6*x7 + x6 + x7 + 1, x3*x8 + x6, x6*x8*x9 +
x6*x8 + x6*x9 + x6 + x7 + x8*x9 + x8 + x9, x8, x9) of Multivariate Polynomial Ring in x1, x2,
x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2

```
B = I.groebner_basis(); B
    [x1, x2, \(\mathrm{x} 3, \mathrm{x} 4, \mathrm{x} 5+1, \mathrm{x} 6, \mathrm{x} 7, \mathrm{x} 8, \mathrm{x} 9\) ]
\(\left(M, P, B, C, R, A, A_{m}, L, L_{m}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)=(1,1,1,1,0,1,1,1,1)\)

\section*{Fixed point analysis of the lac operon}

Using the variables \(\left(M, P, B, C, R, A, A_{m}, L, L_{m}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)\) we got the following fixed points for each choice of parameters \(\left(G_{e}, L_{e}\right)\)
- Input: \(\left(G_{e}, L_{e}\right)=(0,0)\)

Fixed point: \(\quad\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)=(0,0,0,1,1,0,0,0,0)\)
- Input: \(\left(G_{e}, L_{e}\right)=(1,0)\)

Fixed point: \(\quad\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)=(0,0,0,0,1,0,0,0,0)\)
- Input: \(\left(G_{e}, L_{e}\right)=(1,1)\)

Fixed point: \(\quad\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)=(0,0,0,0,1,0,0,0,0)\)
- Input: \(\left(G_{e}, L_{e}\right)=(0,1)\)

Fixed point: \(\quad\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)=(1,1,1,1,0,1,1,1,1)\)
All of these fixed points make biological sense!```

