1. A picture illustrating the quadratic integers $R_{-5}=\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}$ as a subring of \mathbb{C} is shown below, with the primes in black, and non-prime irreducibles in red.

(a) Create an analogous picture for the ring $R_{-6}=\mathbb{Z}[\sqrt{-6}]$. First make a blank diagram with the norms of the quadratic integers labeled at each correponding lattice point.
(b) Find primes $p \in \mathbb{Z}$ that in R_{-6} are inert, split (both reducible and irreducible), and ramified. Illustrate this with subring lattices. Examples for R_{-5} are shown below.
$\mathbb{Z}[\sqrt{-5}]$

(29)

(3)

(5)
(c) Give an elementary characterization of non-prime irreducibles in R_{-6}.
2. Prove the following basic facts about principal ideal domains (PIDs).
(a) The following three conditions are equivalent for nonzero $a, b \in R$:
(i) a and b are associates (that is, $a \mid b$ and $b \mid a$),
(ii) $a=b u$ for some unit $u \in R$,
(iii) $(a)=(b)$.
(b) The following three conditions are equivalent for an element $a \in R$:
(i) a is irreducible
(ii) the ideal (a) is maximal
(iii) the ideal (a) is prime
(c) Any two nonzero elements $a, b \in R$ have a unique LCM, up to associates, which is a generator m of $(a) \cap(b)$.
3. If the quadratic integer ring R_{m} is a Euclidean domain, then for every nonzero $a, b \in R$, the division algorithm can be used to find $r, q \in R$ such that

$$
a=b q+r, \quad 0 \leq N(r)<N(b) .
$$

(a) The following visual shows all three ways to write $a=b q+r$ in the Gaussian integers, for $a=6+3 i$ and $b=1+2 i$. Carry out the division algorithm for $a=9+8 i$ and $b=3+i$, and create an analogous picture to illustrate it.

(b) The ring $R_{-5}=\mathbb{Z}[\sqrt{-5}]$ is not a Euclidean domain, since the division algorithm fails for $a=5$ and $b=2+\sqrt{-5}$, as demonstrated by the following visual. Find an a and b in $R_{-6}=\mathbb{Z}[\sqrt{-6}]$ that confirms that it too is not Euclidean, and construct an analogous visual.

