1. A picture illustrating the quadratic integers $R_{-5} = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$ as a subring of \mathbb{C} is shown below, with the primes in black, and non-prime irreducibles in red.

- (a) Create an analogous picture for the ring $R_{-6} = \mathbb{Z}[\sqrt{-6}]$. First make a blank diagram with the norms of the quadratic integers labeled at each corresponding lattice point.
- (b) Find primes $p \in \mathbb{Z}$ that in R_{-6} are inert, split (both reducible and irreducible), and ramified. Illustrate this with subring lattices. Examples for R_{-5} are shown below.

(c) Give an elementary characterization of non-prime irreducibles in R_{-6} .

- 2. Prove the following basic facts about principal ideal domains (PIDs).
 - (a) The following three conditions are equivalent for nonzero $a, b \in R$:
 - (i) a and b are associates (that is, $a \mid b$ and $b \mid a$),
 - (ii) a = bu for some unit $u \in R$,
 - (iii) (a) = (b).
 - (b) The following three conditions are equivalent for an element $a \in R$:
 - (i) a is irreducible
 - (ii) the ideal (a) is maximal
 - (iii) the ideal (a) is prime
 - (c) Any two nonzero elements $a, b \in R$ have a unique LCM, up to associates, which is a generator m of $(a) \cap (b)$.
- 3. If the quadratic integer ring R_m is a Euclidean domain, then for every nonzero $a, b \in R$, the division algorithm can be used to find $r, q \in R$ such that

$$a = bq + r, \qquad 0 \le N(r) < N(b).$$

(a) The following visual shows all three ways to write a = bq+r in the Gaussian integers, for a = 6 + 3i and b = 1 + 2i. Carry out the division algorithm for a = 9 + 8i and b = 3 + i, and create an analogous picture to illustrate it.

(b) The ring $R_{-5} = \mathbb{Z}[\sqrt{-5}]$ is *not* a Euclidean domain, since the division algorithm fails for a = 5 and $b = 2 + \sqrt{-5}$, as demonstrated by the following visual. Find an a and b in $R_{-6} = \mathbb{Z}[\sqrt{-6}]$ that confirms that it too is not Euclidean, and construct an analogous visual.

