1. The "rectangular" quadratic integer rings $R_{m}=\mathbb{Z}[\sqrt{m}]$ are norm-Euclidean for $m=$ $-2,-1,2,3$. The proof involves constructing the quotient q, as the nearest element to a / b, as shown below:

For each $m=-2,-1,2,3$,

$$
-1<N\left(\frac{r}{b}\right)=\underbrace{(c-s)^{2}}_{\leq \frac{1}{4}}-m \underbrace{(d-t)^{2}}_{\leq \frac{1}{4}}<1 .
$$

Prove the same result for the "triangular" quadratic integer ring $R_{m}=\mathbb{Z}\left[\frac{1+\sqrt{m}}{2}\right]$, for $m=-3,-7$, and -11 . Include an analogous picture illustrating the idea. [Hint: Mimic the proof of the rectangular cases, but note that to reach nearest quadratic integer, one needs to travel at most a horizontal distance of $1 / 2$ and a vertical distance of $\sqrt{m} / 2$.]
2. Find a solution to each of the following systems of equations, as guaranteed by the Sunzi remainder theorem, and show your work.
(a) In the ring \mathbb{Z} of integers:

$$
x \equiv 1 \quad(\bmod 8), \quad x \equiv 3 \quad(\bmod 7), \quad x \equiv 9 \quad(\bmod 11)
$$

(b) In the ring $R_{-1}=\mathbb{Z}[i]$ of Gaussian integers:

$$
x \equiv i \quad(\bmod i+1), \quad x \equiv 1 \quad(\bmod 2-i), \quad x \equiv 1+i \quad(\bmod 3+4 i)
$$

(c) In $F[x]$, where F is a field in which $1+1 \neq 0$:

$$
f(x) \equiv 1 \quad(\bmod x-1), \quad f(x) \equiv x \quad\left(\bmod x^{2}+1\right), \quad f(x) \equiv x^{3} \quad(\bmod x+1)
$$

3. An idempotent is an element $e \in R$ satisfying $e^{2}=e$. Two nonzero idempotents e_{1}, e_{2} are an orthogonal pair if $e_{1}+e_{2}=1$ and $e_{1} e_{2}=0$.
(a) Show that the following are equivalent:
(i) R contains an idempotent different from 0 and 1.
(ii) R contains an orthogonal pair of idempotents.
(iii) $R \cong R_{1} \times R_{2}$ for some rings R_{1} and R_{2}.
(b) Give an example of a non-orthogonal pair of distinct idemponents.
(c) Find all idempotents in the ring $\mathbb{Z} / 20 \mathbb{Z} \cong \mathbb{Z}_{5} \times \mathbb{Z}_{4}$.
