1. (a) Show that $f(x)=x^{4}+10 x^{3}-16 x^{2}+6 x+2$ is irreducible over \mathbb{Q}.
(b) Show that $f(x)=x^{p}+p-1$ is irreducible over \mathbb{Q}, for any prime p. [Hint: $f(x)$ is irreducible iff $f(x+1)$ is.]
(c) Show that

$$
\mathbb{R}[x] /\left(x^{2}+1\right) \cong \mathbb{C}, \quad \text { and } \quad \mathbb{C}[x] /\left(x^{2}+1\right) \cong \mathbb{C} \times \mathbb{C}
$$

Clearly state any results that you use.
2. Consider the following rings R_{i}, for $i=1, \ldots, 6$, which are additionally \mathbb{C}-vector spaces:

$$
\begin{aligned}
& R_{1}=\mathbb{C}[x] /\left(x^{3}-1\right) \\
& R_{2}=\mathbb{C} \times \mathbb{C} \times \mathbb{C} \\
& R_{3}=\text { the ring of upper triangular } 2 \times 2 \text { matrices over } \mathbb{C} \\
& R_{4}=\mathbb{C}[x] /(x-1) \times \mathbb{C}[x] /(x+i) \times \mathbb{C}[x] /(x-i) \\
& R_{5}=\mathbb{C}[x] /\left(x^{2}+1\right) \times \mathbb{C}[x] /(x-1) \\
& R_{6}=\mathbb{C}[x] /(x+1)^{2} \times \mathbb{C}[x] /(x-1) .
\end{aligned}
$$

(a) Compute the dimension of each R_{i} as a \mathbb{C}-vector space by giving an explicit basis.
(b) Partition the rings R_{1}, \ldots, R_{6} into isomorphism classes, with justification.
3. Let R be a commutative ring with identity and F a field.
(a) Show that if R is a PID then any nonzero prime ideal $P \subseteq R$ is maximal.
(b) Show that there is a bijective correspondence between maximal ideals of $F[x]$ and monic irreducible polynomials in $F[x]$.
(c) Show that if $M \subsetneq \mathbb{Z}[x]$ is a maximal ideal, then $M \bigcap \mathbb{Z}=(p)$ for some prime $p \neq 0$.
(d) Show that there is a bijective correspondence between maximal ideals of $\mathbb{Z}[x]$ that contain p and monic irreducible polynomials in $\mathbb{Z}_{p}[x]$.
(e) Characterize all maximal ideals of $\mathbb{Z}[x]$.
4. Let I be an ideal of $R[x]$, where R is an integral domain. Define

$$
I(m)=\left\{a_{m} \mid f(x)=a_{m} x^{m}+\cdots+a_{1} x+a_{0} \in I\right\} \cup\{0\} \unlhd R .
$$

(a) Show that $I(m)$ is an ideal of R.
(b) Show that $I(m) \subseteq I(m+1)$.
(c) Show that if $I \subseteq J$, then $I(m) \subseteq J(m)$.

Do any of these three results use the assumption that R has unity?

