1. The splitting field of the polynomial $f(x)=x^{4}-2$ is

$$
K=\mathbb{Q}(\sqrt[4]{2}, i)=\{a+b \sqrt[4]{2}+c \sqrt{2}+d \sqrt[4]{8}+e i+f \sqrt[4]{2} i+g \sqrt{2} i+h \sqrt[4]{8} i \mid a, \ldots, h \in \mathbb{Q}\}
$$

which has degree $[\mathbb{Q}(\sqrt[4]{2}, i): \mathbb{Q}]=8$ over \mathbb{Q}.
(a) There are eight non-trivial proper subfields of $\mathbb{Q}(\sqrt[4]{2}, i)$:

- Five of degree 4 over the rationals: $\mathbb{Q}(\sqrt[4]{2}), \mathbb{Q}(i \sqrt[4]{2}), \mathbb{Q}(\sqrt{2}, i), \mathbb{Q}((1+i) \sqrt[4]{2})$, and $\mathbb{Q}((1-i) \sqrt[4]{2})$.
- Three of degree 2 over the rationals: $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(i)$, and $\mathbb{Q}(i \sqrt{2})$.

For each subfield F, find a polynomial $f(x)$ of minimal degree that has a root r such that $F=\mathbb{Q}(r)$. Then determine how many of the roots of $f(x)$ lie in K.
(b) Arrange the 10 subfields in a lattice, with $\mathbb{Q}(\sqrt[4]{2}, i)$ on top, and \mathbb{Q} on the bottom.
(c) The field $\mathbb{Q}(\sqrt[4]{2}, i)$ can be generated by just $\sqrt[4]{2}+i$, which is called a primitive element. For each of the ten subfields $F \subseteq \mathbb{Q}(\sqrt[4]{2}, i)=\mathbb{Q}(\sqrt[4]{2}+i)$, find a primitive element α over F, and its minimal polynomial. The degree of the polynomial will be equal to the degree of the extension $[F: \mathbb{Q}]$.
2. Consider the polynomial $f(x)=x^{5}-2$.
(a) Show that the splitting field of $f(x)=x^{5}-2$ is $K=\mathbb{Q}(\sqrt[5]{2}, \zeta)$, where $\zeta=e^{2 \pi i / 5}$ is a primitive $5^{\text {th }}$ root of unity.
(b) In the complex plane, sketch all five roots of $f(x)$, and all five fifth roots of unity.
(c) Find the subfields of K, and arrange them in a subfield lattice, whose structure is shown below.

3. Consider the function

$$
\phi: \mathbb{Q}(\sqrt{2}) \longrightarrow \mathbb{Q}(\sqrt{2}), \quad \phi(a+b \sqrt{2})=a-b \sqrt{2} .
$$

Show that ϕ is a field automorphism.
4. Let α be a root of a polynomial $f(x)$ that irreducible over \mathbb{Q}, which means that it generates a maximal ideal in $\mathbb{Q}[x]$.
(a) Show that

$$
\phi: \mathbb{Q}[x] \longrightarrow \mathbb{Q}(\alpha), \quad \phi: f(x) \longmapsto f(\alpha)
$$

is a ring homomorphism.
(b) Show that $\mathbb{Q}[x] /(f(x)) \cong \mathbb{Q}(a)$.
(c) Show that if β is another root of $f(x)$, then there is a field isomorphism $\mathbb{Q}(\alpha) \rightarrow \mathbb{Q}(\beta)$ that fixes \mathbb{Q}, elementwise, and sends $\alpha \mapsto \beta$.

