1. The Galois group of $x^{n}-1$ naturally acts on the $n^{\text {th }}$ roots of unity; this is shown below for $n=3, \ldots, 8$. The primitive roots are highlighted.

(a) Construct analogous diagrams for $n=9,10$, and 16 .
(b) For each of these three, write the splitting field of $x^{n}-1$ with elements that do not involve ζ. If possible, write the generating automorphism(s) of $\operatorname{Gal}\left(x^{n}-1\right)$ in terms of them. For example, $\mathbb{Q}\left(\zeta_{8}\right)=\mathbb{Q}(\sqrt{2}, i)$, and $\operatorname{Gal}\left(x^{8}-1\right)=\langle\sigma, \tau\rangle \cong \mathbb{Z}_{8}^{\times} \cong V_{4}$, where

$$
\left\{\begin{array} { l }
{ \sigma : \sqrt { 2 } \longmapsto \sqrt { 2 } } \\
{ \sigma : \quad i \longmapsto - i }
\end{array} \quad \left\{\begin{array}{l}
\tau: \sqrt{2} \longmapsto-\sqrt{2} \\
\tau: \quad i \longmapsto i
\end{array}\right.\right.
$$

(c) Draw the subgroup lattice of $\operatorname{Gal}\left(x^{n}-1\right)$ and the subfield lattice of $\mathbb{Q}(\zeta)$.
2. Consider the following polynomial that is irreducible over \mathbb{Q} :

$$
f(x)=x^{4}-x^{2}-5=\left(x^{2}-\sqrt{\frac{1}{2}+\frac{\sqrt{21}}{2}}\right)\left(x^{2}-\sqrt{\frac{1}{2}-\frac{\sqrt{21}}{2}}\right) .
$$

Denote its roots by $r_{1}, r_{2}, r_{3}, r_{4}$, its splitting field by $K=\mathbb{Q}\left(r_{1}, r_{2}, r_{3}, r_{4}\right)$, and its Galois group over \mathbb{Q} by $G=\operatorname{Gal}(f(x))$.
(a) Since $f(x)$ is irreducible, $\left[\mathbb{Q}\left(r_{i}\right): \mathbb{Q}\right]=4$. Use this to find a lower bound on $[K: \mathbb{Q}]$.
(b) By the tower law, $[K: \mathbb{Q}]=\left[\mathbb{Q}\left(r_{1}, r_{2}, r_{3}, r_{4}\right): \mathbb{Q}\right]$ is equal to
$\left[\mathbb{Q}\left(r_{1}, r_{2}, r_{3}, r_{4}\right): \mathbb{Q}\left(r_{1}, r_{2}, r_{3}\right)\right] \cdot\left[\mathbb{Q}\left(r_{1}, r_{2}, r_{3}\right): \mathbb{Q}\left(r_{1}, r_{2}\right)\right] \cdot\left[\mathbb{Q}\left(r_{1}, r_{2}\right): \mathbb{Q}\left(r_{1}\right)\right] \cdot\left[\mathbb{Q}\left(r_{1}\right): \mathbb{Q}\right]$.
Use this to find an upper bound on $[K: \mathbb{Q}]$.
(c) Find $[K: \mathbb{Q}]=\mid \operatorname{Gal}(f(x) \mid$, and then the Galois group by process of elimination.
3. Suppose $\alpha \neq 0$ is algebraic over \mathbb{Q} and $[\mathbb{Q}(\alpha): \mathbb{Q}]$ is odd.
(a) Show that $\mathbb{Q}(\alpha)=\mathbb{Q}\left(\alpha+\alpha^{-1}\right)$.
(b) Give an example to show how this can fail if $[\mathbb{Q}(\alpha): \mathbb{Q}]$ is even.
(c) Repeat the previous two parts, but for the subfield $\mathbb{Q}\left(\alpha^{2}-\alpha\right)$.

