1. The Galois group of $x^n - 1$ naturally acts on the n^{th} roots of unity; this is shown below for $n = 3, \ldots, 8$. The primitive roots are highlighted.

- (a) Construct analogous diagrams for n = 9, 10, and 16.
- (b) For each of these three, write the splitting field of $x^n 1$ with elements that do not involve ζ . If possible, write the generating automorphism(s) of $\operatorname{Gal}(x^n - 1)$ in terms of them. For example, $\mathbb{Q}(\zeta_8) = \mathbb{Q}(\sqrt{2}, i)$, and $\operatorname{Gal}(x^8 - 1) = \langle \sigma, \tau \rangle \cong \mathbb{Z}_8^{\times} \cong V_4$, where

$$\begin{cases} \sigma \colon \sqrt{2} \longmapsto \sqrt{2} \\ \sigma \colon i \longmapsto -i \end{cases} \qquad \begin{cases} \tau \colon \sqrt{2} \longmapsto -\sqrt{2} \\ \tau \colon i \longmapsto i \end{cases}$$

- (c) Draw the subgroup lattice of $\operatorname{Gal}(x^n 1)$ and the subfield lattice of $\mathbb{Q}(\zeta)$.
- 2. Consider the following polynomial that is irreducible over \mathbb{Q} :

$$f(x) = x^4 - x^2 - 5 = \left(x^2 - \sqrt{\frac{1}{2} + \frac{\sqrt{21}}{2}}\right) \left(x^2 - \sqrt{\frac{1}{2} - \frac{\sqrt{21}}{2}}\right)$$

Denote its roots by r_1, r_2, r_3, r_4 , its splitting field by $K = \mathbb{Q}(r_1, r_2, r_3, r_4)$, and its Galois group over \mathbb{Q} by G = Gal(f(x)).

- (a) Since f(x) is irreducible, $[\mathbb{Q}(r_i):\mathbb{Q}] = 4$. Use this to find a lower bound on $[K:\mathbb{Q}]$.
- (b) By the tower law, $[K : \mathbb{Q}] = [\mathbb{Q}(r_1, r_2, r_3, r_4) : \mathbb{Q}]$ is equal to $[\mathbb{Q}(r_1, r_2, r_3, r_4) : \mathbb{Q}(r_1, r_2, r_3)] \cdot [\mathbb{Q}(r_1, r_2, r_3) : \mathbb{Q}(r_1, r_2)] \cdot [\mathbb{Q}(r_1, r_2) : \mathbb{Q}(r_1)] \cdot [\mathbb{Q}(r_1) : \mathbb{Q}].$ Use this to find an upper bound on $[K : \mathbb{Q}].$
- (c) Find $[K:\mathbb{Q}] = |\operatorname{Gal}(f(x))|$, and then the Galois group by process of elimination.
- 3. Suppose $\alpha \neq 0$ is algebraic over \mathbb{Q} and $[\mathbb{Q}(\alpha) : \mathbb{Q}]$ is odd.
 - (a) Show that $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha + \alpha^{-1}).$
 - (b) Give an example to show how this can fail if $[\mathbb{Q}(\alpha) : \mathbb{Q}]$ is even.
 - (c) Repeat the previous two parts, but for the subfield $\mathbb{Q}(\alpha^2 \alpha)$.