1. Every group $G = \langle a, b \rangle$ satisfying the relations $a^4 = 1$, $b^2 = 1$, and $(ab)^2 = 1$ is isomorphic to a quotient of D_4 . Formally, this means that there is a unique homomorphism $D_4 \twoheadrightarrow G$ making the following diagram commute:

where ι and θ are the inclusion maps $a \mapsto a$ and $b \mapsto b$. The figure below shows all of the distinct ways to collapse the Cayley diagram for D_4 by right cosets of a subgroup, and the corresponding relation(s) added, if the result is a group.

Create an analogous figure for $C_4 \rtimes C_4 = \langle a, b \mid a^4 = b^4 = abab^{-1} = 1 \rangle$.

2. Consider the "mystery group" $M = \langle S_1 | R_1 \rangle$ defined by the following presentation.

$$M = \left\langle a, b, c \mid a^4, \ c^2, \ a^2 b^{-2}, \ a b a^{-1} b^{-1}, \ a c a^{-1} c, \ a^2 b c^{-1} b^{-1} c^{-1} \right\rangle.$$

The relators of this presentations describe the following motifs that a Cayley graph for $M = \langle a, b, c \rangle$ must have.

(a) Establish $|M| \leq 16$ by showing that every word in M can be written

$$a^{i}b^{j}c^{k}, \quad i \in \{0, 1, 2, 3\}, \quad j \in \{0, 1\}, \quad k \in \{0, 1\},$$

- (b) Identify a "familiar group" $F = \langle S_2 | R_2 \rangle$ of order 16 whose generators satisfy these relations. That is, define a "relabing map" $\theta \colon S_1 \to S_2$ that extends to $\theta \colon R_1 \to R_2$.
- (c) Describe why it follows that $M \cong F$.
- 3. Determine which group is described by each presentation, and prove that your answer is correct.
 - (a) $G = \langle a, b \mid a^2 = 1, b^3 = 1, ab = ba \rangle$ (b) $G = \langle a, b \mid a^4 = 1, a^2 = b^2, ab = ba^3 \rangle$ (c) $G = \langle a, b \mid a^4 = b^3 = 1, ab = ba^3 \rangle$ (d) $G = \langle a, b, c \mid a^2 = b^2 = c^2 = (ab)^3 = (ac)^2 = (bc)^3 = 1 \rangle$.