1. Every group $G=\langle a, b\rangle$ satisfying the relations $a^{4}=1, b^{2}=1$, and $(a b)^{2}=1$ is isomorphic to a quotient of D_{4}. Formally, this means that there is a unique homomorphism $D_{4} \rightarrow G$ making the following diagram commute:

where ι and θ are the inclusion maps $a \mapsto a$ and $b \mapsto b$. The figure below shows all of the distinct ways to collapse the Cayley diagram for D_{4} by right cosets of a subgroup, and the correponding relation(s) added, if the result is a group.

Create an analogous figure for $C_{4} \rtimes C_{4}=\left\langle a, b \mid a^{4}=b^{4}=a b a b^{-1}=1\right\rangle$.
2. Consider the "mystery group" $M=\left\langle S_{1} \mid R_{1}\right\rangle$ defined by the following presentation.

$$
M=\left\langle a, b, c \mid a^{4}, c^{2}, a^{2} b^{-2}, a b a^{-1} b^{-1}, a c a^{-1} c, a^{2} b c^{-1} b^{-1} c^{-1}\right\rangle .
$$

The relators of this presentations describe the following motifs that a Cayley graph for $M=\langle a, b, c\rangle$ must have.

$a^{4}=1 \quad c^{2}=1 \quad a^{2}=b^{2}$

$a b=b a$

$a c=c a$

$a^{2} b=c b c$
(a) Establish $|M| \leq 16$ by showing that every word in M can be written

$$
a^{i} b^{j} c^{k}, \quad i \in\{0,1,2,3\}, \quad j \in\{0,1\}, \quad k \in\{0,1\},
$$

(b) Identify a "familiar group" $F=\left\langle S_{2} \mid R_{2}\right\rangle$ of order 16 whose generators satisfy these relations. That is, define a "relabing map" $\theta: S_{1} \rightarrow S_{2}$ that extends to $\theta: R_{1} \rightarrow R_{2}$.
(c) Describe why it follows that $M \cong F$.
3. Determine which group is described by each presentation, and prove that your answer is correct.
(a) $G=\left\langle a, b \mid a^{2}=1, b^{3}=1, a b=b a\right\rangle$
(b) $G=\left\langle a, b \mid a^{4}=1, a^{2}=b^{2}, a b=b a^{3}\right\rangle$
(c) $G=\left\langle a, b \mid a^{4}=b^{3}=1, a b=b a^{3}\right\rangle$
(d) $G=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=(a b)^{3}=(a c)^{2}=(b c)^{3}=1\right\rangle$.

