## Supplemental material for Math 4130, HW 6

\#1: The group $G=S_{4}$, constructed as a sequence of abelian extensions, from "top-to-bottom": $G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd G_{3}=\langle 1\rangle$.

\#1: The group $G=S_{4}$, constructed as a sequence of abelian extensions, from "bottom-to-top": $\langle 1\rangle=G_{3} \unlhd G_{2} \unlhd G_{1} \unlhd G_{0}=G$.

\#2: The group $G=D_{3} \times C_{4}$, constructed as a sequence of abelian extensions, from "top-to-bottom": $G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd G_{3}=\langle 1\rangle$.

\#2: The group $G=D_{3} \times C_{4}$, constructed as a sequence of abelian extensions, from "bottom-to-top": $\langle 1\rangle=G_{3} \unlhd G_{2} \unlhd G_{1} \unlhd G_{0}=G$.

\#2: The group $G=Q_{8} \rtimes C_{9}$, constructed as a sequence of abelian extensions, from "top-to-bottom": $G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd G_{3}=\langle 1\rangle$.

\#2: The group $G=Q_{8} \rtimes C_{9}$, constructed as a sequence of abelian extensions, from "bottom-to-top": $\langle 1\rangle=G_{3} \unlhd G_{2} \unlhd G_{1} \unlhd G_{0}=G$.


