
Weekly schedule: Math 4130, Spring 2023

• WEEK 1: 1/11–1/13. Course overview Wednesday. One lecture Friday on re-
viewing ring theory, covering the Chapter 7 slides (pp. 1–15). HW 1 due next
Friday.

Summary & key ideas. A ring R is first and foremost an additive abelian
group. We review the three different types of substructures of a ring, which are all
“subgroups with extra structure”. A subgroup H ≤ R can be either

– an ideals (closed under multiplication by R)
– an subrings that are not ideals ; (closed under multiplication by H)
– subgroups that are not subrings (not closed under multiplication).

The subring lattice is simply the subgroup lattice with colors denoting the type
of substructure. The ring Z3

3 exhibited all three substructures. We also saw all 11
rings of order 4, though this was mostly to get more familiar with the substructures.

To do:
– Familiarize yourself with subring lattices, what the colors mean, and the dif-

ference between 〈S〉 and (S).

– Be able to write down and identify different examples of substructures of Z[x],
like 〈x〉, (x), 〈2〉, (2), 〈x, 2〉, and (x, 2). Know which polynomials each contains,
which is a ideal, subring, etc.

– Know examples of left ideals that are not right ideals.

Learn / memorize:
– Be able to write down formal mathematical definitions of a ring, subring, and

ideal.
– Be able to construct the subring lattice of Z2

2 and Z2
3 from scratch.
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• WEEK 2: 1/16–1/20. MLK Day Monday. Two lectures on reviwing ring theory,
covering the Chapter 7 slides (much of pp. 16–62, but some slides skipped). HW 0
due next Monday.

Summary & key ideas. We discussed the ideal generated by a set S ⊆ R, which
is the smallest ideal that contains S. If R contains 1, then this is equal to the set
of all “linear combinations”, much like a number of other similar definitions we’ve
seen. However, if R does not contain 1, then we only get one containment! We saw
examples like R = 2Z[x], with S = {2}, and also S = {2, x}.

We reviewed the notions of units and zero divisors. A big idea is the proper ideals
cannot contain units. Integral domains are rings with 1 that have no zero divisors.

We reviewed how the quotient ring R/I is defined, and how to add and multiply
cosets. Then we reviewed the four ring isomorphism theorems, and saw that they
were almost completely analogous to those for groups. The FHT says that every
homomorphic image is a quotient. Then the correspondence theorem chacterizes
the substructures of a quotient R/I – the subrings have the form S/I and the ideals
have the form J/I, for S and J that contain I. In terms of the subring lattice, this
just means that taking the quotient amounts to chopping off the lattice at I, while
preserving the colors. The fraction theorem says that (R/I)/(J/I) ∼= R/J , which
means that chopping the lattice off at I, and then at J , has the same effect as
originally chopping it off at J . Finally, the diamond theorem describes an inherient
structural duality within subring lattices.

There are two “imporant” types of ideals: maximal and prime ideals. This week
we reviewed maximal ideals: these are those for which R/I is simple (by the cor-
respondence theorem). If R is commutative, then I is maximal iff R/I is a field
(because fields avoid units!). We saw some subring lattices of finite fields along the
way. Unlike groups, which need not have maximal subgroups (like the Prüfer group
that we saw), every ideal is contained in a maximal ideal. We need some tools from
set theory for this. Specifically, Zorn’s lemma, which is equivalent to the axiom of
choice, is needed to carry out unions transfinititely. In understanding this, we saw
some fun facts about ordinal arithmetic along the way, like how 1 +ω = ω 6= ω+ 1.

To do:
– Make sure you understand how to interpret all of the isomorphism theorems

in terms of subring lattices.

Learn / memorize:
– Learn the definitions of units, zero divisors, kernels, and ring homomorphisms.
– Be able to prove (in 1 line) that if an ideal I contains a unit, then I = R.
– Be able to prove (in 1 line) that Ker(φ) is an ideal.
– Be able to prove (in 1 line) the FHT for rings, assuming the FHT for groups.
– Know that I is maximal iff R/I is a field.
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– Learn the common examples of maximal ideals, and what their quotient fields
are. E.g., (p) ⊆ Z, and (p, x) ⊆ Z[x], and (x) ⊆ F [x], and (x, y) ⊆ F [x, y], and
Fp[x]/(f(x)) for an irreducible degree-n polynomial.
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• WEEK 3: 1/23–1/27. Three lectures on the Chapter 7 slides (pp. 70–89). HW
1 due Friday.

Summary & key ideas. Given an integral domain, its field of fractions is the
smallest field that contains it. We can construct this by defining an equvalence
relation on a set R×R∗ of ordered pairs, where (a, b) ∼ (c, d) iff ad = bc. Addition
and multiplication is defined in the predictable manner. This can be formalized via
a (co-)universal property, and visualized with a commutative diagram.

The construction of the field of fractions can be generalized to R × D, where
D ⊆ R is any multiplicatively closed subset (D for “denominator”) containing no
zero divisors. The resulting ring is called the localization at D, denoted D−1R, and
it is the smallest ring that contains R in which everything in D has a multiplicative
inverse. A common example of this is D = R−P , the complement of a prime ideal.
Finally, via the universal property, this construction can be generalized to the case
when D contains zero divisors, but the map ι : R→ D−1R is no longer injective.

Next, we begun looking at divisibility and factorization in integral domains. Since
a | b iff (b) ⊆ (a), the key idea is that concepts on divisibility are much cleaner in the
language of ideals. In rings in which every ideal is principal (generated by a single
element), the lattice of ideals is basically the lattice of divisors, and so divisbility and
factorization are very well-behaved. These rings are called principal ideal domains
(PIDs). In contrast, when unique factorization fails, like 3·3 = (2−

√
−5)(2+

√
−5)

in Z[
√
−5], there are non-principal ideals, like (3, 2−

√
−5).

We say that elements a, b ∈ R are associates if a | b and b | a. An element p is
irreducible if its only divisors are associates and units. It is prime if p | ab implies
p | a or p | b. In a PID, these concepts coincide. In general, we always have prime
⇒ irreducible. For example, 3 | (2 −

√
−5)(2 +

√
−5) = 9 is irreducible but not

prime because 3 - (2±
√
−5).

A weaker condition than a ring being a PID is being Noetherian: every ideal is
finitely generated. Equivalentally, every ascending chain I1 ⊆ I2 ⊆ · · · stabilizes.

To do:
– Know the field of fractions for some basic rings (e.g., Z, F[x], and Z[

√
−m]).

– Be able to state basic properties about divisibility into the language of ideals.
– Be able to explain in simple terms why PID are “nice rings.”
– Be able to use explicit examples of unique factorization failing (e.g., 3 | (2 −√
−5)(2+

√
−5) = 9) to find a non-principal ideal and a non-prime irreducible.

Learn / memorize:
– The definition of a prime ideal, principal ideal, and PID.
– The definitions of associates, irreducible and prime elements, and that “prime
⇒ irreducible.”
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• WEEK 4: 1/30–2/4. Three lectures on the Chapter 7 slides (pp. 90–119). HW
2 due Friday.

Summary & key ideas. In a principal ideal domain (PID), properties of divisibil-
ity can be read right off the “lattice of ideals.” Since a | b iff (b) ⊆ (a), the smallest
ideal containing (a) and (b) is (gcd(a, b)), and their intersection is (lcm(a, b)). A
unique factorization domain (UFD) is a weaker type of ring than a PID, where
(i) every nonzero element is a product of irreducibles, and (ii) every irreducible
is prime. Failure of (ii) would lead to an infinite chain I1 ( I2 ( · · · , which
would imply that R isn’t Noetherian (and certinaly not a PID). Examples of UFDs
that aren’t PIDs are Z[x] and F [x, y]. Non-examples of UFDs include Z[

√
−5] and

Q[x, x1/2, x1/4, . . . ].
We defined a Eulidean domain to be a ring where the division algorithm works:

given a, b ∈ R with b 6= 0, we can write a = bq + r, with d(r) < d(b), where
d : R∗ → Z≤0 is a degree function satisfying a | b ⇒ d(a) ≤ d(b). Examples include
Z, Z[i], F [x]. We showed that units are the elements of R of minimal norm, and
the every Euclidean domain is a PID, by showing that every ideal I is generated
by any element d ∈ I of minimal norm.

For every squarefree m ∈ Z, there is a quadratic field Q(
√
m). This has a subring

Rm consisting of roots of monic polynomials. If m ≡ 2, 3 (mod 4), then Rm =

Z[
√
m], but Rm = Z

[
1+
√
m

2

]
for m ≡ 1 (mod 4). If m < 0, then the former consists

of complex numbers on a “rectangular” grid, and the latter lies on a “triangular”
grid. The field norm is N(a + b

√
m) = a2 − m2b, which is the square of the

complex norm if m < 0, otherwise it could take negative values. It’s multiplictive
property, N(xy) = N(x)N(y), is quite useful. Two important examples are the

Gaussian integers, R−1 = Z[i] and the Eisenstein integers, R−3 = Z
[
1+
√
−3

2

]
. We

saw examples of primes in these rings, and in R−5, which has non-prime irreducibles.
Each prime p ∈ Z when passing to Rm can do one of three things:

– inert : if (p) is a prime ideal in Rm

– split : if (p) = P1P2 for distinct prime ideals Pi
– ramified if (p) = P 2 for a prime ideal P .

These can be characterized with quadratic residues mod p, but that’s not a priority
in this class.

The (ideal) class group measures how unique factorization fails in a UFD. The
elements are equivalence classes of ideals, where I ∼ J if αI = βJ (i.e., I and J
have “a common multiple”). The identity element are the principal ideals. We saw
that Cl(R−5) ∼= Z2, Cl(R−14) ∼= Z4, and Cl(R−30) ∼= Z2

2.

To do:
– Be able to explain why rings like Z[

√
−5] and Q[x, x1/2, x1/4, . . . ] aren’t UFDs.

– Given a PID, know how to identify (gcd(a, b)) and (lcm(a, b)) in the lattice of
ideals.
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– Be able to interpret the behavior of primes p in Rm (inert, splits, ramified) in
terms of subring lattices.

– Be able to identify non-prime irreducibles in a picture of a ring like R−5 or R−6.

Learn / memorize:
– The definition of a UFD and Euclidean domain.
– Learn examples of UFDs that aren’t PIDs.
– Learn examples of Euclidean domains and their degree functions.
– The definition of the ring Rm of quadratic integers (both “rectangular” and

“triangular” types).
– The definition of a prime that splits, is inert, or ramifies, in Rm.

• WEEK 5: 2/6–2/10. Three lectures on the Chapter 7 slides (pp. 120–139). HW
3 due Friday.

Summary & key ideas. The ring Rm of quadratic integers is norm Euclidean if
it is a Euclidean domain with degree function d(x) = |N(x)|, i.e., the field norm
N(a + b

√
m) = a2 − mb2 of Q(

√
m). We showed that Rm is norm-Euclidean in

the “rectangular” cases for m = −2,−1, 2, 3, and left the “triangular cases” of
m = −11,−7,−3, 5, 13 for the HW. It turns out that rings like R69 and R14 are
Euclidean but not norm Euclidean, which is just bizarre (D.A. Clark, 1994).

The Sunzi remainder theorem from number theory dates back to 3rd century
China, and it guarantees that a system of linear congruences (mod n1, . . . , nk) have
a solution if the n1, . . . , nk are pairwise co-prime. We formulated four versions of
this, each more general than the other: for PIDs, commutative rings, and finally for
general rings. This required us to define what it means for ideals to be co-prime:
I+J = R. We proved the most general version of this. We discussed several group-
theoretic analogues, including an old HW exercises, that G/(A∩B) ∼= G/A×G/B,
and a new HW problem on idempotents.

We finished with looking at polynomial rings. If R is an integral domain, then
R[x] is as well. A useful technique is to “reduce coefficients mod I”, and we showed
that (R/I)[x] ∼= R[x]/(I), where (I) := I[x]. Finally, we showed that IER is prime
iff (I)ER[x] is prime.

To do:
– Review the slides and ask any questions that you have.

Learn / memorize:
– Learn the definition of the product IJ of two ideals.
– Learn the definition of co-prime ideals.
– Memorize the formulation of the Sunzi remainder theorem.
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• WEEK 6: 2/13–2/17. Three lectures on the Chapter 7 slides (pp. 140–151),
and the Chapter 5 slides (pp. 109–114). HW 4 due Friday.

Summary & key ideas. We continued to study polynomial rings. A polynomial
is primitive if the GCD of its coefficients is 1. We proved Gauss’ lemma: if f(x)
and g(x) are primitive, then so is f(x)g(x). Finally, we proved the theorem that if
we can’t factor a polynomial (i.e., if its irreduicible) in R[x], then we can’t factor it
in F [x], where F is the field of fractions of R. Finally, we formulated Eisenstein’s
criterion: if a prime p divides all coefficients of f(x) = anx

n + · · ·+ a1x+ a0 except
an, and p2 - a0, then f(x) is irreducible.

Next, we moved onto Hilbert’s basis theorem: if a ring R with 1 is Noetherian
(i.e., every ideal if finitely generated), then so is R[x]. Inductively this means that
R[x1, . . . , xn] is as well. We saw an explicit example using R = 2Z for how it fails
if 1 /∈ R.

Finally, we spent a day with the alternating groups An, and proved that they are
simple. The conjugacy class of an element σ ∈ Sn is precisely the set of element
with the same cycle type. In An, these conjugacy classes are either the same, or
they split into two classes of equal size. This is basically just due to the diamond
theorem, and whether the centralizer CSn(σ) lies in An or not (in which case, ex-
actly half of it lies in An). Next, we proved that all 3-cycles are conjuagte in An (for
n ≥ 5), and they all generate An. Finally, we showed that every normal subgroup
N 6= 〈1〉 of An contains a 3-cycle, and hence every 3-cycle, and so N = An. In
other words, An does not contain any normal subgroups, other than An and 〈1〉.
Thus, An is simple for n ≥ 5.

To do:
– Practice using Eisensten’s criterion to show that a polynomial is irreducible.

Learn / memorize:
– Hilbert’s basis theorem: if R is Noetherian, then R[x1, . . . , xn] is as well.
– An is simple for all n 6= 4.
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• WEEK 7: 2/20–2/24. Three lectures on the Chapter 6 slides (pp. 1–32). Quiz
2 Wednesday. HW 5 due Friday.

Summary & key ideas. If N E G and Q = G/N , then G is an extension of Q

by N . This can be described by saying that the sequence N
ι
↪→ G

π
� Q is exact,

which means that if Im(ι) = Ker(π). Sometimes, this is expressed as a short exact

sequence, 1 → N
ι
↪→ G

π
� Q → 1. This has a pleasing visual interpretation in the

subgroup lattice: Q is “sitting on top of” N . Though we always have N E G and
H ∼= G/N , in some cases, we also have G ∼= NoH (right split) or even G ∼= N×H
(left split).

Next, we started at the top of a subgroup lattice and took “simple steps” down
to the bottom, which defined a composition series. This shows that every group can
be built from simple extensions. The Jordan-Hölder theorem says that every com-
position series has the same (simple) factors, which can be thought of as a “unique
factorization theorem” for groups. Groups are solvable iff all of these factors are
cyclic (the other possibility are non-abelian simple groups). Another way to “climb
down” a subgroup lattice is to take “maximum abelian steps” down, which reaches
the bottom iff G is simple. This defines the derived series, of iteratively taking the
commutator subgroup. Groups that are simple can alternatively be described as
those that can be built using only abelian extensions.

To do:
– Be able to describe in plain and simple terms (intuitive, in terms of subgroup

lattices) what the following concepts mean:

(1) Extension of Q by N
(2) Composition series

(3) Derived series.
(4) Solvable group.

– Be able to determine whether an extension is right or left split by inspection
the subgroup lattice.

– Be able to find all composition series of a group G by inspection, using the
subgroup lattice.

– Be able to find the derived series by inspection, using the subgroup lattice.

Learn / memorize:
– Be able to construct subgroup lattices (by isomorphism type, not necessarily

generators) of C4, V4, D3, C6, Q8, D4 from memory.
– Be able to recognize subgroup lattices of larger groups like A4, Dic6, and Q16.
– What it means that G is an extension of Q by N , and how to encode this in

terms of a subgroup lattice.
– Definitions: group extension, composition series, derived series, solvable group.
– Two equivalent conditions of what it means to be solvable (composition factors

are cyclic, or the derived series reaches the bottom).
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• WEEK 8: 2/27–3/3. Two lectures on the Chapter 6 slides (pp. 33–43). Midterm
1 Wednesday. HW 6 due Friday (extended until Monday night).

Summary & key ideas. Given N E G, we showed showed that G is solvable iff
N and G/N are both solvable. This has as nice “almost picture proof” involving
concatenating composition series of N and G/N and using the correspondence
theorem. We also briefly discussed a chief series of a group, which is a maximal
normal series. In contrast, a composition series is a maximal subnormal series.

The ascending central series (ACS) of G is a normal series 〈1〉 = Z0 E Z1 E · · ·
defined inductively by “jumping up to the center, taking the quotient, and repeating
this process.” If this reaches the top of the lattice in m steps, then G is nilpotent, of
nilpotency class m. If G is nilpotent, it is solvable. This is intuitive because G being
nilpotent means it can be built with central extension, whereas solvable groups can
be built with abelian extensions (central implies abelian, but not conversely).

The process described above are called maximal central ascents, and we can de-
fine (not necessarily maximal) central ascents similarly: H is a central ascent from
N E G iff G/H is central in G/N . We proved the central series lemma: H/N is
central in G/N iff [G,H] ≤ N . This encourages us to try to (almost) “invert”
this process: given N E G, the subgroup [G,N ] is contained in N ; we call it a
maximal central descent, ad define intermedate groups as central descents. We can
visualize these together with the chutes and ladders diagram of a group, which is
its subgroup lattice annotated with red a blue arrows out of every subgroup: red
for the maximal central descents, and blue for the maximal central ascents. The
ascending and descending central series can be read right off of this diagram.

To do:
– Keep studying subgroup lattices! Be able to recognize C4, V4, C6, D3, D4, Q8,
C4 × C2, A4, Dic6, D6, Q16, D8, SD8, SA8, SL2(Z3).

– Practice taking maximal central ascents and descents on subgroup lattices.
Try constructing the chutes and ladders diagram of the groups above.

– Practice finding the derived series, composition series, chief series, and the up-
per and lower central series on subgroup lattices, by inspection.

Learn / memorize:
– The definition of a normal series, and a subnormal series.
– Learn what the center is in the groups above.
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• WEEK 9: 3/6–3/10. Three lectures on the Chapter 6 slides (pp. 43–62), and
Chapter 10 slides (pp. 1–7). Quiz 3 Monday. HW 7 due Friday.

Summary & key ideas. The descending central series (DCS) is a normal series
G = L0 D L1 D · · · , which each Lk+1 is defined inductively as “the lowest we can
go down so the previous subgroup Lk is central in the quotient” (technically, G/Lk
is central in G/Lk+1). We showed that this reaches the bottom of the lattice iff
the ascending central series reaches the top, and they do so in the same number
of steps. In the language to think of about this: the ASC is the result of taking
maximal central ascents up the lattice, and the DSC is the result of taking maximal
central descents down. The key step in the proof was showing that Ln−k ≤ Zk for
all k. In other words, the ASC and DSC form a “crooked ladder,” with the Li’s
lower than the correponding Zj’s.

We finished with a summary of a number of equivalent conditions for what it
means for G to be nilpotent, proving a few and skipping others (they were Math
8510 HW): (i) the ASC reaches the top, (ii) the DCS reaches the bottom, (iii) G
has no fully unnormal subgroup, (iv) all Sylow p-subgroups are normal, (v) G is
the direct product of its Sylow p-subgroups, and (vi) every maximal subgroup of G
is normal.

A number of classic problem that stumped the ancient Greeks (e.g., squaring the
circle, doubling the cube, trisecting an angle, the unsolvability of the quintic) have
elegant solutions involving field theory. Since fields are simple rings, every nonzero
field homomorphism φ : K → L is an embedding. We call φ, and L, an extension.
The unfortunate notation L/K is used to denote this. A key observation is that if
K ⊂ L, are fields, then L is a K-vector space. The degree of the extension is simply
the dimension of this vector space, i.e., the size of a basis. For example, Q(

√
2) has

basis {1,
√

2}, and Q(
√

2, i) has basis {1,
√

2, i,
√

2i}.

To do:
– Be able to prove that every nonzero field homomorphism is injective.
– Be able to prove that if K ⊆ L are field extensions, then L is a K-vector space.

Learn / memorize:
– Learn the basic field theory definitions, and the definition of a vector space.
– Memorize the six equivalent conditions of what it means for G to be nilpotent.
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• WEEK 10: 3/13–3/17. Two lectures on the Chapter 10 slides (pp. 8–20). For
Friday: watch the (old) Lecture 6.3: Polynomials and irreducibility (23:53–38:20)
and Lecture 6.4: Galois groups (34 min); the links are on Canvas or a pre-2021
Math 4120 webpage. Quiz 4 Wednesday. HW 8 due Friday (okay to turn it in the
Monday after spring break).

Summary & key ideas. The degree of a simple field extension K(α) is the
degree of a minimal polynomial of α over K. The splitting field of a polynomial is
the smallest field that contains all of its roots. A field F is algebraically closed if
every polynomial in F [x] splits; like the complex numbers C. We analyzed several
examples, like Q(

√
2, i) and Q( 3

√
2, ω), and observed that their subfield lattices had

the same structure as several familiar subgroup lattices, but upside-down. There
is also a tower law for fields: if F ⊆ E ⊆ K are extensions, then [K : F ] =
[K : E][E : F ]. A field extension generated by a single element is called primitive.
The primitive element theorem says that every finite-degree extension of Q has a
primitive element, i.e., if [K : Q] < ∞, then K = Q(α). These results will be
proven later.

The automorphism group of a field extension K of Q is called its Galois group,
denoted Gal(K). The Galois group of a polynomial f(x) is the Galois group of
its splitting field, denoted Gal(f(x)). We saw several examples of Galois groups:
Gal(Q(

√
2)) ∼= C2, Gal(Q(

√
2, i)) ∼= V4, Gal(Q(

√
2, ζ3)) ∼= D3.

To do:
– Be able to draw the subfield lattices of the field extensions we’ve seen: Q(

√
2),

Q(
√

2, i), Q( 3
√

2, ζ3).

Learn / memorize:
– Learn the examples of field extensions we’ve seen, and what a basis for each

is: Q(
√

2), Q(
√

2, i), Q( 3
√

2, ζ3).
– Learn the new definitions we’ve seen: what it means for K(α) to be algebraic,

the minimal polynomial of α, the splitting field of a polynomial, a primitive
element, the Galois group of a field extension, and of a polynomial.

– Learn the Galois groups of the fields listed above.
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• WEEK 11: 3/27–4/1. Watch the (old) Lecture 6.5: Galois group actions and
normal field extensions (26 min), Lecture 6.6: The fundamental theorem of Galois
theory (31 min). The links are on Canvas or a pre-2021 Math 4120 webpage. HW
8 can be turned in Monday. HW 9 due Friday.

Summary & key ideas. The Galois group permutes the roots of a polynomial.
This means that there is a group action of Gal(f(x)) on its roots. If f(x) is
irreducible, then this action is transitive (i.e., has only one orbit). An extension
K of F is normal if every irreducible polynomial f(x) ∈ F [x] splits in K[x]. In
other words, “if K contains one root of an irreducible polynonmial, it must contain
all of them.” The degree of a normal extension is equal to the order of its Galois
group; otherwise it is strictly greater than the order. In other words, the order of
Gal(f(x)) is the degree of the extension of its splitting field.

The fundamental theorem of Galois theory (roughly) says that the subfield lattice
of K has the same structure as the subgroup lattice of Gal(K), but ‘’upside-down.”
Moreover, the normal field extensions correspond to normal subgroups. These
results are stated this week, and will be proven next week. A polynomial f(x) is
solvable by radicals iff its Galois group Gal(f(x)) is solvable. Thus, in order to
find a polynomial that isn’t solvable, it suffices to find one that has Galois group
S5. Any degree-5 polynomial with exactly two complex roots is such an example –
because it contains an element of order 5 (Cayley’s theorem), which is a 5-cycle, and
complex conjugation is a 2-cycle. Together, these generate S5, which isn’t solvable.
To do:

– Practice determining which subfields are normal, and which polynomials they
are splitting fields of.

– Revisit the subfield lattices of Q(
√

2), Q(
√

2, i), Q( 3
√

2, ζ3), and explore the
lattice of Q( 4

√
2, i).

– Compare the subfield lattices of the examples above to the subgroup lattices
of the corresponding Galois group.

– Be able to explain the main ideas behind the FTGT, and solvability by radicals
in terms of the Galois group.

Learn / memorize:
– Learn the definition of what it means for an extension field to be normal.
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• WEEK 12: 4/3–4/7. Watch the (old) Lecture 6.7: Ruler and compass construc-
tions (23 min), and Lecture 6.8: Impossibility proofs (17 min). The links are on
Canvas or a pre-2021 Math 4120 webpage.

Summary & key ideas. The problem from the ancient Greeks about ruler and
compass constructions have elegant solutions from field theory. Every constructable
number lives in some extension of Q of degree 2n. Doubling the cube would require
constructing 3

√
2, squaring the circle would require Q(

√
π), and trisecting an angle

would require cos(20◦), and none of these live in an extension of Q of degree 2n.
We spent the last two days proving the results that were used in the YouTube

videos in the previous week, including:
– Minimal polynomials are irreducible, and unique (up to scalars).
– Every element in F (α) can be written uniquely as s = r(α), for some polyno-

mial r(x) ∈ F [x].
– If α, β have the same irreducible polynomial over F , then F (α) ∼= F (α).
– The degree of the field extension, [F (α) : F ], is equal to the degree of the

minimal polynomial, mα(x).
– Tower law of field extensions: if F ⊆ E ⊆ K, then [K : F ] = [K : E][E : F ].
– Primitive element theorem: If [K : F ] <∞, then K = F (α) for some α ∈ K.

To do:
– Be able to identity a primitive element for the small examples of splitting fields

that we have seen. Your first “guess” is probably right.

Learn / memorize:
– Learn and understand what [F (α) : F ] = mα(x) means, and how to apply it.
– Given some algebraic number α, be able to write the generic form of an element

of the field F (α).
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• WEEK 13: 4/10–4/14. Midterm 2 Friday. HW 9 extended until Friday.

Summary & key ideas. We summarized the main ideas of Galois theory, with
examples, and proceeded with the proof of the fundamental theorem of Galois theory
(FTGT). The key ingredient is a pair of maps

F :
{

subgroups of Gal(K)
}
−→

{
subfields of K

}
G :

{
subfields of K

}
−→

{
subgroups of Gal(K)

}
,

defined as
– F(H) = “the (subfield of) elements of K fixed by every φ ∈ H”
– G(E) = “the (subgroup of) automorphisms of Gal(K) that fixes every e ∈ E.”

These maps are order-reversing :

J ≤ H ⇒ FJ ⊇ FH, E ⊆ L ⇒ GE ≥ GL.
Moreover, if K : F is a Galois extension (every α ∈ K gets moved by some automor-
phism) , then they are bijections, and preserve the (subfield) degree and (subgroup)
index. That is, if J ≤ H ≤ Gal(K) and F ⊆ E ⊆ L ⊆ K,

[FJ : FH] = [H : J ], [GE : GL] = [L : E].

To do:
– Study for Midterm 2, on group extensions, composition series, solvable and

nilpotent groups.
– Demonstrate how F and G fail to be “nice” for a non-Galois extension, like
K = Q( 3

√
2).

Learn / memorize:
– Be able to define the maps F and G.

– Be able to find the specific subfields and subgroups of the maps F and G, for
“small” examples, like the splitting field of f(x) = (x2− 2)(x2 + 1) and x3− 2.
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• WEEK 14: 4/17–4/21. Three lectures on examples of Galois groups, cyclotomic
extension, and the Galois correspondence via the maps F and G. HW 10 due Friday.

Summary & key ideas. A cyclotomic extension is a field extension of the form
K = F (ζ), where ζ = e2πi/n is a (primitive) root of unity. The Galois group is

Gal(K) =
{
σk | gcd(n, k)

} ∼= Aut(Zn) ∼= U(n) = Z×n ,
where σk : ζ 7→ ζn. It acts simply transitively on the primitive roots of unity. The
Cayley table of Gal(xn − 1) is the same as the Cayley table of Z×n , but replacing k
with σk. It’s also the same as the Cayley table of Aut(Zn), where σk is the “k-ling”
(e.g., doubling, tripling) map.

The Galois group of xn − b, where b ≥ 2, is “usually” the semidirect product of
the normal subgroup 〈ρ〉 ∼= Cn, where ρ : n

√
b 7→ ζ n

√
b, and Gal(xn − 1) ∼= U(n).

One exception is Gal(x8− 2), because ζ8 =
√
2
2

+
√
2
2
i, and

√
2 = ( 8

√
2)4. This group

has different relations than Gal(x8 − 3), because ζ8 does “not have a power of 8
√

3
in it.”

To do:
– Be able draw the action graph of Gal(xn − 1) on the n roots of unity.
– Explore the Galois groups of x3 − 2, x4 − 2, x5 − 2, and x6 − 2.
– Understand the difference of Gal(x8 − 2) vs. Gal(x8 − 3) – why one of these

has order 16 and the other 32.
– Your time is best spent understanding the examples of Galois groups that we

have seen in class and on the homework (there are not too many of them), and
the maps F and G.

Learn / memorize:
– Gal(xn − 1) ∼= Z×n
– Memorize which group Z×n is for n = 3, . . . , 12. And know how to rederive it

if you forget.
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• WEEK 15: 4/24–4/28. HW 11 due Friday. Two lectures on free groups, free
products, and group presentations, covering the slides from Chapter 7: Universal
constructions, pp. 51-54, 74-79, 83-87. We also mentioned in passing, a few other
topics for background and context from this chapter, including factoring maps, cat-
egory theory, the fundamental group of a topological space, and free abelian groups.
On the last day of class, we returned to Galois theory and sketched the proof of the
fundamental theorem (FTGT), and one direction of the fact that f(x) is solvable
by radicals iff Gal(f(x) is a solvable group.

Summary & key ideas. We started by revisiting the notion of a group presen-
tation. We can always write a relation as a word that is the identity; these are
“relators”. For example, a = b just means ab−1 = 1. Formally, we will consider
presentations of the form G = 〈S | R〉, where S are the generators, and R is the
set of relators.

A free group on a set S is the group G = 〈S | 〉, i.e., the group of all words in
the generating set (and inverses), subject to no relations, other than the “trivial”
ones of the form ss−1 = 1, and s−1s = 1. The free group is the “largest” group
on S, in that every other group generated by S is a quotient of it. Sometimes,
(like in Math 8510), this property is taken as the actual definition, which can be
formalized as a universal property, using a triangular commutative diagram. The
Cayley diagram of the free group F2 = 〈a, b | 〉 looks “fractal-like,” because it has
no loops. Surprisingly, if n,m ≥ 2, the free group Fn embeds into the free group
Fm.

A related concept is the free product of groups. Specifically, the free product of
A = 〈S1 | R1〉 and B = 〈S2 | R2〉 is the group A ∗ B = 〈S1 t S2 | R1 t R2〉. We
have already seen examples of this without realizing it: C2 ∗ C2

∼= D∞ (a frieze
group!), and C3 ∗ C2

∼= PSL2(Z) (recall the tiling of hyperbolic triangles in the
upper half-plane).

Then, we formalized the notion of a group presentation, G = 〈S | R〉, as the
quotient of the free group FS by the smallest normal subgroup containing the set
R of relators. Loosely speaking “adding generators induces a quotient.” Thus, if
G1 = 〈S1 | R1〉 has “more generators, and/or fewer relations” than G2 = 〈S2 | R2〉,
there is a quotient G1 � G2. To apply this: if we want to show that a “mystery
group” M = 〈S1 | R1〉 is isomorphic to a familiar group “F = 〈S2 | R2〉”, then we
(i) use generators and relations to show that |M | ≤ |F |, and then (ii) find a map
θ : S1 � S2 that preserves relations.

Returning to Galois theory: an intermediate subfield E, where F ⊆ E ⊆ K is
stable if φ(E) = E for all automorphisms φ ∈ Gal(K : F ). This is equivalent to
the corresponding group being normal, and this is the last piece we needed for the
FTGT.

A simple extension of a field F is one of the form F (α), where αn ∈ F – basically
just adjoining an nth root. An extension by radicals of F is an extension K that can
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be constructed iteratively by simple extensions. Loosely speaking, at every step of
the way, we are adjoining a root of a polynomial xni − bi. At the end of the day,
this can be achieved by:

– adjoining an nth root of unity (an abelian extension), where n = n1n2 · · ·nk
– adjoining pthi root, for i = 1, . . . , k (each is a cyclic extension).

This sequence of field extensions correspond to a sequence of abelian extensions of
groups, via the Galois correspondence. Since all extensions are abelian, Gal(f(x))
has a compositions series with cyclic factors, and thus is solvable.

To do:
– Understand what is meant by “adding generators induces a quotient.”
– Be able to show that M = 〈a, b | a2 = b2 = 1, ab = ba〉 is V4, by (i) using

relations to show that |M | ≤ 4, and then (ii) mapping a and b to 2 × 2
matrices.

– In very rough terms, be able to explain the idea of the fundamental theorem
of Galois theory.

– In very rough terms, be able to explain the steps in the proof that the poly-
nomial f(x) = x5 − 10x2 + 2 is not solvable by radicals.

Learn / memorize:
– The difference between a free group on S, and a free product of groups G1 and
G2.
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Finals week: 5/1–5/5. Final exam Friday 3–5:30pm.

To do: Study! The exam will be cumulative.


