Math 4130, Spring 2023

Note: This is just a guide, not an all-inclusive list. It is also recommended to look at the topics outlined on the *Weekly Schedule*.

Study guide: Midterm 1 (rings).

Definitions to memorize.

- (1) A ring R.
- (2) A *unit*, and a *zero divisor* of a ring.
- (3) An *ideal* of a ring R (left, right, and two-sided).
- (4) Types of rings: integral domain, division ring, field.
- (5) The quotient ring R/I for some two-sided ideal I, and how to add and multiply elements.
- (6) A homomorphism ϕ from a ring R to a ring S.
- (7) The kernel of a ring homomorphism.
- (8) A principal ideal and a principal ideal domain (PID).
- (9) A maximal ideal M of a ring R. [Best: $M \subseteq I \subseteq R \Rightarrow I = M$ or I = R.]
- (10) A prime ideal P of a ring R.
- (11) What it means for $a \mid b$, and for a and b to be associates.
- (12) What it means for an element to be *prime*, and *irreducible*.
- (13) What it means for a ring to be *Noetherian*.
- (14) What it means for a prime p in R_m to be *inert*, *split*, or *ramify*.
- (15) Two ideals that are *coprime*.

Useful facts and techniques.

- (1) Construct the subring lattice of a small finite ring, and be able to determine the ideals, subrings that aren't ideals, and subgroups that aren't subrings.
- (2) Examples of ideals, subrings that aren't ideals, and subgroups that aren't subrings, in various rings.
- (3) An ideal M is maximal iff R/M is a field. An ideal P is prime iff R/P is an integral domain.
- (4) Examples of both maximal ideals and prime ideals, prime ideals that aren't maximal.
- (5) Learn how to construct a finite field \mathbb{F}_q of order $q = p^k$.
- (6) Know the statements of the fundamental homomorphism theorem and the correspondence theorem for rings and how to apply them.
- (7) The three equivalent conditions of a ring R being Noetherian (ACC, finitely generated ideals, maximal condition.)
- (8) Be able to state basic properties about divisibility into the language of ideals. [e.g., $a \mid b$ iff $(b) \subseteq (a)$.]
- (9) Be able to identify the GCD and LCM in the lattice of ideals.
- (10) Applying the Sunzi remainder theorem to show that a ring is isomorphic to a product.
- (11) Using Eisenstein's criterion to show that a polynomial is irreducible.

Proofs to learn.

- (1) If an ideal I of R contains a unit, then I = R.
- (2) The that if $\phi: R \to S$ is a ring homomorphism, then $\operatorname{Ker}(\phi)$ is a two-sided ideal of R.
- (3) Prove the isomorphism theorems for rings, assuming the results for groups.
- (4) The following are equivalent for commutative rings: (i) I is a maximal ideal, (ii) R/I is simple, (iii) R/I is a field.
- (5) An ideal P is prime iff R/P is an integral domain. [Translate the definition into the quotient ring.]
- (6) A ring R is an integral domain iff 0 is a prime ideal. [Just the definition.]
- (7) Every maximal ideal is prime. [Consider R/I.]

- (8) Use Zorn's lemma to show that every ideal is contained in a maximal ideal.
- (9) Show that if $m \in R$ is irreduicble, then (m) is maximal among principal ideals.
- (10) Show that if $p \in R$ is prime, then it is irreducible. [Easier to work with ideals.]

Examples to know.

- (1) The difference between $\langle S \rangle$ and $\langle S \rangle$. E.g., $\langle 2 \rangle$ vs. (2) in $\mathbb{Z}[x]$.
- (2) The field of fractions for some basic rings (e.g., \mathbb{Z} , F[x], $\mathbb{Z}[\sqrt{m}]$.
- (3) Examples of where unique factorization fails, and how this is reflected into the language of ideals.
- (4) Types of Euclidean domains:
 - (a) Fields: $\mathbb{Z}_p, \mathbb{F}_q \cong \mathbb{Z}_p[x]/(f(x)), \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q}(\sqrt{m}).$
 - (b) Euclidean domains: $\mathbb{Z}, F[x], R_m \ (m = -1, -3, -7, -11, 2, ...)$
 - (c) Principal ideal domains (PIDs): R_{-19} , all Eulidean domains, fields.
 - (d) UFDs: $\mathbb{Z}[x], F[x, y]$
 - (e) non-UFDs: Most R_m (e.g., R_{-5} , R_{-14} , R_{-30}).
 - (f) $2\mathbb{Z}$ is a counterexample for several results that require R to have unity.
- (5) Maximal ideals and the resulting quotient field.
- (6) Examples of a primes p in some R_m that are *inert*, *split*, and *ramify*.

Study guide: Midterm 2 (group extensions).

Definitions to memorize.

- (1) A group G that is an extension of Q by N.
- (2) An exact sequence $\cdots \xrightarrow{\phi_0} G_1 \xrightarrow{\phi_1} G_2 \xrightarrow{\phi_2} G_3 \xrightarrow{\phi_3} \cdots$.
- (3) Different types of extensions: abelian, central, simple, and split.
- (4) What it means for a short exact sequence to be right split, and left split.
- (5) A simple group.
- (6) A subnormal series of G.
- (7) A normal series of G.
- (8) A composition series of G, and the composition factors.
- (9) The commutator of elements $x, y \in G$.
- (10) The commutator subgroup of G, and the abelianization.
- (11) The derived series of G.
- (12) The ascending central series and descending central series.

Useful facts and techniques.

- (1) How to encode an extension of Q by N as a short exact sequence.
- (2) If short exact sequence $N \hookrightarrow G \twoheadrightarrow Q$ is right split, then $G \cong N \rtimes Q$, and if it is left split, then $G \cong N \times Q$.
- (3) Be able to recognize when $G \cong N \rtimes H$ and $G \cong N \times H$ just from the subgroup lattices (lattice complements).
- (4) The alternating group A_n is simple for $n \neq 4$.
- (5) Several equivalent characterizations of solvable groups: (all composition factors are cyclic; there is a subnormal series with abelian factors; the derived series reaches the bottom).
- (6) How to construct the derived series from the subgroup lattice, by inspection.
- (7) How to construct the ascending and descending central series from the subgroup lattice, by inspection. The chutes and ladders diagram is a great way to practice.
- (8) If G is nilpotent, then the ascending and descending series will have the same length.
- (9) Understand what the Jordan-Hölder theorem says, and how to interpret it in terms of the subgroup lattice.

Proofs to learn.

- (1) If $N \xrightarrow{\iota} G \xrightarrow{\pi} Q$ is exact, then ι is injective and π is surjective.
- (2) G is solvable iff G/N and N are solvable.
- (3) p-groups are nilpotent
- (4) nilpotent groups are solvable.
- (5) the equivalence of the three characterizations of solvable groups (see above).
- (6) $G' \trianglelefteq G$ and G/G' is abelian.
- (7) $\phi([x,y]) = [\phi(x), \phi(y)]$ and $\phi([H,K]) = [\phi(H), \phi(K)]$
- (8) The central series lemma: If $N \le H \le G$, and $N \le G$, then $H/N \le Z(G/N)$ iff $[G, H] \le N$.
- (9) If $[G, H] \leq N$ and $[G, K] \leq N$, then $[G, HK] \leq N$. (Use the central series lemma).

Examples to know.

- (1) All nilpotent groups are solvable.
- (2) All *p*-groups are nilpotent (and hence solvable).
- (3)
- (4) Learn the 6-7 equivalent conditions of a finite group G being nilpotent.
- (5) The smallest nonabelian simple groups $(A_5, \operatorname{GL}_3(\mathbb{Z}_2), A_6, \ldots)$
- (6) The smallest nonsolvable groups are A_5 (simple, order 60), S_5 , $A_5 \times C_2$, $SL_2(\mathbb{Z}_5)$ (order 120), $GL_3(\mathbb{Z}_2)$ (simple, order 168), $A_5 \times C_3$ (order 180), and eight groups of order 240.

- (7) The 3-4 smallest nonnilpotent groups (these are more common).
- (8) Be able to construct series (composition, derived, ascending, descending) of examples of groups (e.g., abelian, simple, A_n , S_n , D_n , etc.)
- (9) How to interpret a solvable or nilpotent group as a being constructed as a sequence of extensions.

Study guide: Final exam (field and Galois theory portion).

Definitions to memorize.

- (1) A field F.
- (2) A field automorphism of F.
- (3) The degree [E:F] of a field extension E of F.
- (4) What it means for a number $\alpha \notin \mathbb{Q}$ to be *algebraic*.
- (5) What it means for a field to be *algebraically closed*.
- (6) The Galois group of a field extension, and of a polynomial.
- (7) The minimal polynomial of a number $r \notin F$.
- (8) A primitive element α of a field extension.
- (9) What it means for an extension field E of F to be normal.

Useful facts and techniques.

- (1) Use Eisenstein's criterion to show that a particular polynomial is irreducible.
- (2) The degree of an extension $\mathbb{Q}(r)$ is the degree of the minimal polynomial of r.
- (3) Every finite extension of \mathbb{Q} has a primitive elemente.
- (4) The Galois group of f(x) acts on its *n* roots, and so $\operatorname{Gal}(f(x)) \leq S_n$. If f(x) is irreducible, then this action has only one orbit.
- (5) $|\operatorname{Gal}(f(x))| = [K : \mathbb{Q}]$, where K is the splitting field of f(x).
- (6) Know the statement of the Fundamental Theorem of Galois theory.
- (7) Summarize in a few sentences how to construct a degree-5 polynomial that is not solvable by radicals.

Proofs to learn.

(1) If $\phi \in \text{Gal}(K : \mathbb{Q})$, then $\phi(x) = x$ for every $x \in \mathbb{Q}$.

Examples to know.

- (1) Know the Galois groups of the following field extensions and be able to describe the explicit automorphisms: $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{2}, i)$, $\mathbb{Q}(\sqrt[3]{2}, \zeta_3)$, $\mathbb{Q}(\sqrt[4]{2}, i)$, and $\mathbb{Q}(\zeta_n)$, where ζ_n is an n^{th} root of unity.
- (2) Be able to construct the subfield lattices of the above fields, and demonstrate the Galois correspondence with subgroups of $\operatorname{Gal}(f(x))$, for some $f(x) \in \mathbb{Q}[x]$.
- (3) Given a familiar subgroup and subfield lattice, identity which subgroups are normal, and which subfields are normal.
- (4) Know the Galois groups of the following polynomials: $f(x) = x^n 1$, $f(x) = x^2 2$, $f(x) = (x^2 2)(x^2 + 1)$, $f(x) = x^3 2$, $f(x) = x^4 2$, $f(x) = x^5 2$, $f(x) = x^6 2$, $f(x) = x^8 2$.