Chapter 5: Actions of groups

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120 \& 4130, Visual Algebra

Overview

Intuitively, a group action occurs when a group G "naturally permutes" a set S of states.
For example:

- The "Rubik's cube group" consists of the 4.3×10^{19} actions that permute the 4.3×10^{19} configurations of the cube.
- The group D_{4} consists of the 8 symmetries of the square. These symmetries are actions that permute the 8 configurations of the square.

Group actions formalize the interplay between the actual group of actions and the sets of objects that they "rearrange."

There are many other examples of groups that "act on" sets of objects. We will see examples when the group and the set have different sizes.

The rich theory of group actions can be used to prove many deep results in group theory.
We have actually already seen many group actions, without knowing it, such as:

- groups acting on themselves by multiplication
- groups acting on themselves by conjugation
- groups acting on their subgroup by conjugation
- groups acting on cosets by multiplication
- automorphism groups acting on groups.

Actions vs. configurations

The group D_{4} can be thought of as the 8 symmetries of the square:

1	2
4	3

There is a subtle but important distinction to make, between the actual 8 symmetries of the square, and the 8 configurations.

For example, the 8 symmetries (alternatively, "actions") can be thought of as

$$
\text { 1, } \quad r, \quad r^{2}, \quad r^{3}, \quad f, \quad r f, \quad r^{2} f, \quad r^{3} f .
$$

The 8 configurations (or states) of the square are the following:

1	2			
4	3	\quad	4	1
:---	:---			
3	2	\(\left	\quad \begin{array}{	ll

2 \& 1\end{array}\right| \quad\)\begin{tabular}{|ll}
2 \& 3

1 \& 4

$\quad \quad$

\hline 2 \& 1

3 \& 4
\end{tabular}\(\left|\quad \begin{array}{|ll|}\hline 3 \& 2

4 \& 1

\hline\end{array} \quad \begin{array}{|ll|}\hline 4 \& 3

1 \& 2\end{array}\right|\)| 1 | 4 |
| :--- | :--- |
| 2 | 3 |

When we were just learning about groups, we made an action graph.

- The vertices corresponded to the states.
- The edges corresponded to generators.
- The paths corresponded to actions (group elements).

Action graphs

Here is the action graph of the group $D_{4}=\langle r, f\rangle$:

In the beginning of this course, we picked a configuration to be the "solved state," and this gave us a bijection between configurations and actions (group elements).

The resulting graph was a Cayley graph. In this section, we'll skip this step.

Actions graphs

In all of the examples we saw in the beginning of the course, we had a bijective correspondence between actions and states. This need not always happen!

Suppose we have a size-7 set consisting of the following "binary squares."

$$
S=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array} \left\lvert\,, \begin{array}{|ll}
0 & 1 \\
1 & 0
\end{array}\right.,\left[\begin{array}{|ll}
1 & 0 \\
0 & 1 \\
\hline
\end{array}, \begin{array}{|ll}
1 & 1 \\
0 & 0 \\
\hline
\end{array}, \begin{array}{|ll}
0 & 1 \\
0 & 1 \\
\hline
\end{array}, \begin{array}{|ll}
0 & 0 \\
1 & 1 \\
\hline
\end{array}, \begin{array}{|ll}
1 & 0 \\
1 & 0 \\
\hline
\end{array}\right\}\right.
$$

The group $D_{4}=\langle r, f\rangle$ "acts on S " as follows:

The action graph above has some properties of Cayley graphs, but there are some fundamental differences as well.

Action graphs vs. G-sets

Definition

A set S with an action by G is called a (right) G-set.

Big ideas

- An action $\phi: G \rightarrow \operatorname{Perm}(S)$ endows S with an algebraic structure.
- Action graphs are to G-sets, like how Cayley graphs are to groups.

$\mathrm{D}_{4}=\langle\mathrm{r}, \mathrm{f}\rangle$
$\left\langle r^{2}\right.$, rf \rangle

$\left\langle r^{2}\right.$, rf $\rangle \quad\left\langle r^{2}\right.$, rf \rangle

$\mathrm{D}_{4}=\langle\mathrm{s}, \mathrm{t}\rangle$

$\langle\mathrm{t}, \mathrm{sts}\rangle \quad\langle\mathrm{t}, \mathrm{sts}\rangle$

Chapter 5: Actions of groups

The "group switchboard" analogy

Suppose we have a "switchboard" for G, with every element $g \in G$ having a "button."
If $a \in G$, then pressing the a-button rearranges the objects in our set S. In fact, it is a permutation of S; call it $\phi(a)$.

If $b \in G$, then pressing the b-button rearranges the objects in S a different way. Call this permutation $\phi(b)$.

The element $a b \in G$ also has a button. We require that pressing the $a b$-button yields the same result as pressing the a-button, followed by the b-button. That is,

$$
\phi(a b)=\phi(a) \phi(b), \quad \text { for all } a, b \in G .
$$

Let $\operatorname{Perm}(S)$ be the group of permutations of S. Thus, if $|S|=n$, then $\operatorname{Perm}(S) \cong S_{n}$. (We typically think of S_{n} as the permutations of $\{1,2, \ldots, n\}$.)

Definition

A group G acts on a set S if there is a homomorphism $\phi: G \rightarrow \operatorname{Perm}(S)$.

The "group switchboard" analogy
In our binary square example, pressing the r-button and f-button permutes S as follows:

Observe how these permutations are encoded in the action graph. (Next to each $s \in S$ is the subgroup that fixes it.)

$D_{4}=\langle r, f\rangle$

$\left\langle r^{2}, r f\right\rangle$
$\left\langle r^{2}, r f\right\rangle$

The "group switchboard" analogy
This action is an embedding $\phi: D_{4} \hookrightarrow \operatorname{Perm}(S) \cong S_{7}$.

Notice that $\operatorname{Im}(\phi)=\langle(23)(4567),(23)(57)\rangle \cong D_{4} \leq S_{7}$.

$D_{4}=\langle r, f\rangle$

Left actions vs. right actions (an annoyance we can deal with)

As we've defined group actions, " pressing the a-button followed by the b-button should be the same as pressing the ab-button."

However, sometimes it appears like it's the same as "pressing the ba-button."
This is best seen by an example. Suppose our action is conjugation:
"Left group action"

"Right group action"

We'll call $a \mathrm{aHa}^{-1}$ the left conjugate of H by a , and $\mathrm{a}^{-1} \mathrm{Ha}$ the right conjugate.
Some books forgo our " ϕ-notation" and use the following notation to distinguish left vs. right group actions:

$$
g \cdot(h \cdot s)=(g h) \cdot s, \quad(s . g) \cdot h=s \cdot(g h) .
$$

We'll usually keep the ϕ, and write $\phi(g) \phi(h) s=\phi(g h) s$ and $s . \phi(g) \phi(h)=s . \phi(g h)$. As with groups, the "dot" will be optional.

Left actions vs. right actions (an annoyance we can deal with)

Alternative definition (other textbooks)

A right group action is a mapping

$$
G \times S \longrightarrow S, \quad(a, s) \longmapsto s . a
$$

such that

- s. $(a b)=(s . a) . b$, for all $a, b \in G$ and $s \in S$
- s.e $=s$, for all $s \in S$.

A left group action is defined similarly. Theorems for left actions have analogues for right actions.

Each left action has a related right action, and vice-versa. We'll use right actions, and write

$$
s . \phi(g)
$$

for "the element of S that the permutation $\phi(g)$ sends s to," i.e., where pressing the g-button sends s.

If we have a left action, we'll write $\phi(g) . s$.
If needed, we can distinguish left G-sets with right G-sets.
G-sets generalize groups. Action graphs generalize Cayley graphs
The group $G=D_{4}=\langle r, f\rangle$ can act on itself ($S=D_{4}$), or on its subgroups,

$$
S=\left\{D_{4},\langle r\rangle,\left\langle r^{2}, f\right\rangle,\left\langle r^{2}, r f\right\rangle,\langle f\rangle,\langle r f\rangle,\left\langle r^{2} f\right\rangle,\left\langle r^{3} f\right\rangle,\left\langle r^{2}\right\rangle,\langle 1\rangle\right\} .
$$

There are several ways to define the result of "pressing the g-button on our switchboard".
We say that: " G acts on. . ."

". . . itself by right-multiplication"

". . . itself by conjugation"

". . . its subgroups by conjugation"

Big idea

Every Cayley graph is the action graph of a particular group action.

Five features of every group action

Every group action has five fundamental features that we will always try to understand.
There are several ways to classify them. For example:

- three are subsets of S
- two are subgroups of G.

Another way to classify them is by local vs. global:

- three are features of individual group or set elements (we'll write in lowercase)
- two are features of the homomorphism ϕ. (we'll write in Uppercase)

We will see parallels within and between these classes.
For example, two "local" features will be "dual" to each other, as will the global features.
Also, our global features can be expressed as intersections of our local features, either ranging over all $s \in S$, or over all $g \in G$.

We'll start by exploring the three local features.

Notation

Throughout, we'll denote identity elements by $1 \in G$ and $e \in \operatorname{Perm}(S)$.

Two local features: orbits and stabilizers

Suppose G acts on set S, and pick some $s \in S$. We can ask two questions about it:
(i) What other states (in S) are reachable from s ? (We call this the orbit of s.)
(ii) What group elements (in G) fix s ? (We call this the stabilizer of s.)

Definition

Suppose that G acts on a set S (on the right) via $\phi: G \rightarrow \operatorname{Perm}(S)$.
(i) The orbit of $s \in S$ is the set

$$
\operatorname{orb}(s)=\{s . \phi(g) \mid g \in G\} .
$$

(ii) The stabilizer of s in G is

$$
\operatorname{stab}(s)=\{g \in G \mid s \cdot \phi(g)=s\} .
$$

In terms of the action graph

(i) The orbit of $s \in S$ is the connected component containing s.
(ii) The stabilizer of $s \in S$ are the group elements whose paths start and end at s; "loops."

The third local feature: fixators
Our first two local features were specific to a certain element $s \in S$.
Our last local feature is defined for each group element $g \in G$. A natural question to ask is:
(iii) What states (in S) does g fix?

Definition

Suppose that G acts on a set S (on the right) via $\phi: G \rightarrow \operatorname{Perm}(S)$.
(iii) The fixator of $g \in G$ are the elements $s \in S$ fixed by g :

$$
\operatorname{fix}(g)=\{s \in S \mid s \cdot \phi(g)=s\} .
$$

In terms of the action graph
(iii) The fixator of $g \in G$ are the nodes from which the g-paths are loops.

In terms of the "group switchboard analogy"

(i) The orbit of $s \in S$ are the elements in S the can be obtained by pressing some combination of buttons.
(ii) The stabilizer of $s \in S$ consists of the buttons that have no effect on s.
(iii) The fixator of $g \in G$ are the elements in S that don't move when we press the g-button.

Three local features: orbits, stabilizers, and fixators
The orbits of our running example are the 3 connected components.
Each node is labeled by its stabilizer.

$D_{4}=\langle r, f\rangle$

$$
D_{4}=\langle r, f\rangle
$$

$$
\left\langle r^{2}, r f\right\rangle
$$

$\left\langle r^{2}, r f\right\rangle$

The fixators are $\operatorname{fix}(1)=S$, and

$$
\begin{gathered}
\operatorname{fix}(r)=\operatorname{fix}\left(r^{3}\right)=\left\{\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right\} \quad \operatorname{fix}\left(r^{2}\right)=\operatorname{fix}(r f)=\operatorname{fix}\left(r^{3} f\right)=\left\{\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array},\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right. \\
\left.\operatorname{fix}(f)=\left\{\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array},\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array},, \begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right\} \quad \operatorname{fix}\left(r^{2} f\right)=\left\{\begin{array}{lll}
0 & 0 \\
0 & 0
\end{array}\right], \begin{array}{lll}
0 & 1 \\
0 & 1
\end{array}\right], \begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right\}
\end{gathered}
$$

Local duality: stabilizers vs. fixators

Consider the following table, where a checkmark at (g, s) means g fixes s.

	0 0 0 0	0 1 1 0	1 0 0 1	0 0 1 1	0 1 0 1	1 1 0 0	1 0 1 0
1	\checkmark						
r	\checkmark						
r^{2}	\checkmark	\checkmark					
r^{3}	\checkmark						
f	\checkmark						
$r f$	\checkmark						
$r^{2} f$	\checkmark						
$r^{3} f$	\checkmark						

- the stablizers can be read off the columns: group elements that fix $s \in S$
- the fixators can be read off the rows: set elements fixed by $g \in G$.

The stabilizer subgroup

Notice how in our example, the stabilizer of each $s \in S$ was a subgroup.
This holds true for any action.

Proposition

For any $s \in S$, the set $\operatorname{stab}(s)$ is a subgroup of G.

Proof (outline)

To show $\operatorname{stab}(s)$ is a group, we need to show three things:
(i) Identity. That is, $s \cdot \phi(1)=s$.
(ii) Inverses. That is, if $s . \phi(g)=s$, then $s \cdot \phi\left(g^{-1}\right)=s$.
(iii) Closure. That is, if $s . \phi(g)=s$ and $s \cdot \phi(h)=s$, then $s . \phi(g h)=s$.

Alternatively, it suffices to show that if $s . \phi(g)=s$ and $s . \phi(h)=s$, then $s . \phi\left(g h^{-1}\right)=s$,
You'll do this on the homework.

All three of these are very intuitive in our our switchboard analogy.

The stabilizer subgroup

As we've seen, elements in the same orbit can have different stabilizers.

Proposition (HW exercise)

Set elements in the same orbit have conjugate stabilizers:

$$
\operatorname{stab}(s . \phi(g))=g^{-1} \operatorname{stab}(s) g, \quad \text { for all } g \in G \text { and } s \in S
$$

In other words, if x stabilizes s, then $g^{-1} \times g$ stabilizes s. $\phi(g)$.
Here are several ways to visualize what this means and why.

In other words, if x is a loop from s, and $s \xrightarrow{g} s^{\prime}$, then $g^{-1} \times g$ is a loop from s^{\prime}.

The stabilizer subgroup

Here is another example of an action (or G-set), this time of $G=D_{6}$.
Let s be the highlighted hexagon, and $H=\operatorname{stab}(s)$.

Two global features: fixed points and the kernel
Our last two features are properties of the action ϕ, rather than of specific elements.
The first definition is new, and the second is an familiar concept in this new setting.

Definition

Suppose that G acts on a set S via $\phi: G \rightarrow \operatorname{Perm}(S)$.
(iv) The kernel of the action is the set

$$
\operatorname{Ker}(\phi)=\{k \in G \mid \phi(k)=e\}=\{k \in G \mid s \cdot \phi(k)=s \text { for all } s \in S\} .
$$

(v) The fixed points of the action, denoted $\operatorname{Fix}(\phi)$, are the orbits of size 1:

$$
\operatorname{Fix}(\phi)=\{s \in S \mid s . \phi(g)=s \text { for all } g \in G\} .
$$

Proposition (global duality: fixed points vs. kernel)
Suppose that G acts on a set S via $\phi: G \rightarrow \operatorname{Perm}(S)$. Then

$$
\operatorname{Ker}(\phi)=\bigcap_{s \in S} \operatorname{stab}(s), \quad \text { and } \quad \operatorname{Fix}(\phi)=\bigcap_{g \in G} \operatorname{fix}(g) .
$$

Let's also write $\operatorname{Orb}(\phi)$ for the set of orbits of ϕ.

Two global features: fixed points and the kernel

In terms of the action graph
(iv) The kernel of ϕ are the paths that are "loops from every $s \in S$."
(v) The fixed points of ϕ are the size-1 connected components.

In terms of the group switchboard analogy
(iv) The kernel of ϕ are the "broken buttons"; those $g \in G$ that have no effect on any s.
(v) The fixed points of ϕ are those $s \in S$ that are not moved by pressing any button.

Global duality: fixed points vs. kernel

Consider the following table, where a checkmark at (g, s) means g fixes s.

	0 0 0 0	0 1 1 0	1 0 0 1	0 0 1 1	0 1 0 1	1 1 0 0	1 0 1 0
1	\checkmark						
r	\checkmark						
r^{2}	\checkmark	\checkmark					
r^{3}	\checkmark						
f	\checkmark						
$r f$	\checkmark						
$r^{2} f$	\checkmark						
$r^{3} f$	\checkmark						

- the fixed points consist of columns with all checkmarks: set elts fixed by everything
- the kernel consists of the rows with all checkmarks: group elements that fix everything.

Two theorems on orbits, and their consequences

Our binary square example gives us some key intutition about group actions.

Qualitative observations

■ elements in larger orbits tend to have smaller stabilizers, and vice-versa

- action tables with more "checkmarks" tend to have more orbits.

Both of these qualitative observations can be formalized into quantitative theorems.

Theorems

1. Orbit-stabilizer theorem: the size of an orbit is the index of the stabilizer.
2. Orbit-counting theorem: the number of orbits is the average number of things fixed by a group element.

If we set up our group actions correctly, the orbit-stabilizer theorem will imply:

- The size of the conjugacy class $\operatorname{cl}_{G}(H)$ is the index of the normalizer of $H \leq G$
- The size of the conjugacy class $\mathrm{cl}_{G}(x)$ is the index of the centralizer of $x \in G$

We can also determine the number of conjugacy classes from the orbit-counting theorem.

Our first theorem on orbits

Orbit-stabilizer theorem

For any group action $\phi: G \rightarrow \operatorname{Perm}(S)$, and any $s \in S$,

$$
|\operatorname{orb}(s)| \cdot|\operatorname{stab}(s)|=|G|
$$

Equivalently, the size of the orbit containing s is $|\operatorname{orb}(s)|=[G: \operatorname{stab}(s)]$.

Proof

Goal: Exhibit a bijection between elements of orb(s), and right cosets of stab(s).
That is, "two g-buttons send s to the same place iff they're in the same coset".

y^{3}	$f r^{3}$	Hr^{3}
r^{2}	$f f^{2}$	Hr^{2}
r	$f r$	Hr
1	f	$\mathbf{H}=\operatorname{stab}(s)$

Note that $s . \phi(g)=s . \phi(k)$ iff g and k are in the same right coset of H in G.

The orbit-stabilizer theorem: $|\operatorname{orb}(s)| \cdot|\operatorname{stab}(s)|=|G|$

Proof (cont.)

Throughout, let $H=\operatorname{stab}(s)$.
" \Rightarrow " If two elements send s to the same place, then they are in the same coset.
Suppose $g, k \in G$ both send s to the same element of S. This means:

$$
\begin{aligned}
& s . \phi(g)=s . \phi(k) \quad \Longrightarrow \quad s . \phi(g) \phi(k)^{-1}=s \\
& \Longrightarrow \quad s . \phi(g) \phi\left(k^{-1}\right)=s \\
& \Longrightarrow \quad s . \phi\left(g k^{-1}\right)=s \quad \text { (i.e., } g k^{-1} \text { stabilizes } s \text {) } \\
& \Longrightarrow g k^{-1} \in H \quad \text { (recall that } H=\operatorname{stab}(s) \text {) } \\
& \Longrightarrow \quad \mathrm{Hgk}^{-1}=\mathrm{H} \\
& \Longrightarrow \quad H g=H k
\end{aligned}
$$

" \Leftarrow " If two elements are in the same coset, then they send s to the same place.
Take two elements $g, k \in G$ in the same right coset of H. This means $H g=H k$.
This is the last line of the proof of the forward direction, above. We can change each \Longrightarrow into \Longleftrightarrow, and thus conclude that $s . \phi(g)=s . \phi(k)$.

If we have instead, a left group action, the proof carries through but using left cosets.

Our second theorem on orbits

Orbit-counting theorem

Let a finite group G act on a set S via $\phi: G \rightarrow \operatorname{Perm}(S)$. Then

$$
|\operatorname{Orb}(\phi)|=\frac{1}{|G|} \sum_{g \in G}|\operatorname{fix}(g)| .
$$

This says that the "average number of checkmarks per row" is the number of orbits:

	0 0 0 0	0 1 1 0	1 0 0 1	$\left.\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$	0 1 0 1	1 1 0 0	1 0 1 0
1	\checkmark						
r	\checkmark						
r^{2}	\checkmark	\checkmark	\checkmark				
r^{3}	\checkmark						
f	\checkmark						
$r f$	\checkmark	\checkmark					
$r^{2} f$	\checkmark						
$r^{3} f$	\checkmark	\checkmark	\checkmark				

Orbit-counting theorem: $|\operatorname{Orb}(\phi)|=\frac{1}{|G|} \sum_{g \in G}|\operatorname{fix}(g)|$.

Proof

Let's first count the number of checkmarks in the action table, three ways:

$$
\underbrace{\sum_{g \in G} \mid \text { fix }(g) \mid}_{\text {count by rows }}=|\{(g, s) \in G \times S \mid s \cdot \phi(g)=s\}|=\underbrace{\sum_{s \in S}|s t a b(s)|}_{\text {count by columns }}
$$

By the orbit-stabilizer theorem, we can replace each $|\operatorname{stab}(s)|$ with $|G| /|\operatorname{orb}(s)|$:

$$
\sum_{s \in S}|\operatorname{stab}(s)|=\sum_{s \in S} \frac{|G|}{|\operatorname{arb}(s)|}=|G| \sum_{s \in S} \frac{1}{|\operatorname{arb}(s)|}
$$

Let's express this sum over all disjoint orbits $S=\mathcal{O}_{1} \cup \cdots \cup \mathcal{O}_{k}$ separately:

$$
|G| \sum_{s \in S} \frac{1}{|\operatorname{orb}(s)|}=|G| \sum_{\mathcal{O} \in \operatorname{Orb}(\phi)}(\underbrace{\sum_{s \in \mathcal{O}} \frac{1}{\mid \text { (why? } ?)}}_{=1})=|G| \sum_{\mathcal{O} \in \operatorname{Orb}(\phi)} 1=|G| \cdot|\operatorname{Orb}(\phi)| .
$$

Equating this last term with the first term gives the desired result.

Groups acting on elements, subgroups, and cosets

It is frequently of interest to analyze the action of a group G on its elements, subgroups, or cosets of some fixed $H \leq G$.

Often, the orbits, stabilizers, and fixed points of these actions are familiar algebraic objects.

A number of deep theorems have a slick proof via a clever group action.

Here are common examples of group actions:

- G acts on itself by multiplication.
- G acts on itself by conjugation.
- G acts on its subgroups by conjugation.

■ G acts on the cosets of a fixed subgroup $H \leq G$ by multiplication.
For each of these, we'll characterize the orbits, stabilizers, fixators, fixed points, and kernel.

We'll encounter familiar objects such as conjugacy classes, normalizers, stabilziers, and normal subgroups, as some of our "five fundamental features".

Theorems that we have observed but haven't been able to prove yet will fall in our lap!

Groups acting on themselves by multiplication

Assume $|G|>2$. The group G acts on itself (that is, $S=G$) by right-multiplication:

$$
\phi: G \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=\text { the permutation that sends each } x \mapsto x g .
$$

- there is only one orbit: $\operatorname{orb}(x)=G$, for all $x \in G$
- the stabilizer of each $x \in G$ is $\operatorname{stab}(x)=\langle 1\rangle$
- the fixator of $g \neq 1$ is $\mathrm{fix}(g)=\emptyset$.
- there are no fixed points, and the kernel is trivial:

$$
\operatorname{Fix}(\phi)=\bigcap_{g \in G} \operatorname{fix}(g)=\emptyset, \quad \text { and } \quad \operatorname{Ker}(\phi)=\bigcap_{s \in S} \operatorname{stab}(s)=\langle 1\rangle .
$$

Cayley's theorem

If $|G|=n$, then there is an embedding $G \hookrightarrow S_{n}$.

Proof

Let G act on itself by right multiplication. This defines a homomorphism

$$
\phi: G \longrightarrow \operatorname{Perm}(S) \cong S_{n} .
$$

Since $\operatorname{Ker}(\phi)=\langle 1\rangle$, it is an embedding.

Groups acting on themselves by conjugation

Another way a group G can act on itself (that is, $S=G$) is by right-conjugation:

$$
\phi: G \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=\text { the permutation that sends each } x \mapsto g^{-1} \times g .
$$

- The orbit of $x \in G$ is its conjugacy class:

$$
\operatorname{orb}(x)=\{x \cdot \phi(g) \mid g \in G\}=\left\{g^{-1} \times g \mid g \in G\right\}=\mathrm{cl}_{G}(x)
$$

- The stabilizer of x is its centralizer:

$$
\operatorname{stab}(x)=\left\{g \in G \mid g^{-1} \times g=x\right\}=\{g \in G \mid x g=g x\}:=C_{G}(x)
$$

- The fixator of $g \in G$ is also its centralizer, because

$$
\operatorname{fix}(g)=\{x \in S \mid x \cdot \phi(g)=x\}=\left\{x \in G \mid g^{-1} \times g=x\right\}=C_{G}(g)
$$

- The fixed points and kernel are the center, because

$$
\operatorname{Fix}(\phi)=\bigcap_{g \in G} \operatorname{fix}(g)=\bigcap_{g \in G} C_{G}(g)=Z(G)=\bigcap_{x \in G} C_{G}(x)=\bigcap_{x \in G} \operatorname{stab}(x)=\operatorname{Ker}(\phi)
$$

Groups acting on themselves by conjugation

Let's apply our two theorems:

1. Orbit-stabilizer theorem. "the size of an orbit is the index of the stabilizer":

$$
\left|\mathrm{cl}_{G}(x)\right|=\left[G: C_{G}(x)\right]=\frac{|G|}{\left|C_{G}(x)\right|}
$$

2. Orbit-counting theorem. "the number of orbits is the average number of elements fixed by a group element":
\#conjugacy classes of $G=$ average size of a centralizer.
Let's revisit our old example of conjugacy classes in $D_{6}=\langle r, f\rangle$:

Notice that the stabilizers are $\operatorname{stab}(r)=\operatorname{stab}\left(r^{2}\right)=\operatorname{stab}\left(r^{4}\right)=\operatorname{stab}\left(r^{5}\right)=\langle r\rangle$,

$$
\operatorname{stab}(1)=\operatorname{stab}\left(r^{3}\right)=D_{6}, \quad \operatorname{stab}\left(r^{i} f\right)=\left\langle r^{3}, r^{i} f\right\rangle
$$

Groups acting on themselves by conjugation

Here is the "fixed point table". Note that $\operatorname{Ker}(\phi)=\operatorname{Fix}(\phi)=\left\langle r^{3}\right\rangle$.

	1	r	r^{2}	r^{3}	r^{4}	r^{5}	f	$r f$	$r^{2} f$	$r^{3} f$	$r^{4} f$	$r^{5} f$
1	\checkmark											
r	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
r^{2}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
r^{3}	\checkmark											
r^{4}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
r^{5}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
f	\checkmark			\checkmark			\checkmark			\checkmark		
$r f$	\checkmark			\checkmark				\checkmark			\checkmark	
$r^{2} f$	\checkmark			\checkmark					\checkmark			\checkmark
$r^{3} f$	\checkmark			\checkmark			\checkmark			\checkmark		
$r^{4} f$	\checkmark		\checkmark				\checkmark			\checkmark		
$r^{5} f$	\checkmark		\checkmark					\checkmark			\checkmark	

By the orbit-counting theorem, there are $|\operatorname{Orb}(\phi)|=72 /\left|D_{6}\right|=6$ conjugacy classes.

Groups acting on themselves by conjugation

Here are the cosets of all 12 cyclic subgroups in D_{6} (some coincide).

r^{5}	$r^{5} f$
r^{4}	$r^{4} f$
r^{3}	$r^{3} f$
r^{2}	$r^{2} f$
r	$r f$
1	f

r^{5}	f
r^{4}	$r^{5} f$
r^{3}	$r^{4} f$
r^{2}	$r^{3} f$
r	$r^{2} f$
1	$r f$

r^{5}	$r f$
r^{4}	f
r^{3}	$r^{5} f$
r^{2}	$r^{4} f$
r	$r^{3} f$
1	$r^{2} f$

r^{5}	$r^{2} f$
r^{4}	$r f$
r^{3}	f
r^{2}	$r^{5} f$
r	$r^{4} f$
1	$r^{3} f$

r^{5}	$r^{3} f$
r^{4}	$r^{2} f$
r^{3}	$r f$
r^{2}	f
r	$r^{5} f$
1	$r^{4} f$

r^{5}	$r^{4} f$
r^{4}	$r^{3} f$
r^{3}	$r^{2} f$
r^{2}	$r f$
r	f
1	$r^{5} f$

$r^{2} f$	$r^{5} f$
$r f$	$r^{4} f$
f	$r^{3} f$
r^{2}	r^{5}
r	r^{4}
1	r^{3}

r^{5}	$r^{5} f$
r^{4}	$r^{4} f$
r^{3}	$r^{3} f$
r^{2}	$r^{2} f$
r	$r f$
$\mathbf{1}$	f

Do you see how to deduce from the orbit-counting theorem that there are 6 conjugacy classes?

Groups acting on subgroups by conjugation

Any group G acts on its set S of subgroups by right-conjugation:

$$
\phi: G \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=\text { the permutation that sends each } H \text { to } g^{-1} H g .
$$

This is a right action, but there is an associated left action: $H \mapsto g \mathrm{Hg}^{-1}$.
Let $H \leq G$ be an element of S.

- The orbit of H consists of all conjugate subgroups:

$$
\operatorname{orb}(H)=\left\{g^{-1} H g \mid g \in G\right\}=\mathrm{cl}_{G}(H) .
$$

- The stabilizer of H is the normalizer of H in G :

$$
\operatorname{stab}(H)=\left\{g \in G \mid g^{-1} H g=H\right\}=N_{G}(H) .
$$

- The fixator of g are the subgroups that g normalizes:

$$
\operatorname{fix}(g)=\left\{H \mid g^{-1} H g=H\right\}=\left\{H \mid g \in N_{G}(H)\right\},
$$

- The fixed points of ϕ are precisely the normal subgroups of G :

$$
\operatorname{Fix}(\phi)=\left\{H \leq G \mid g^{-1} H g=H \text { for all } g \in G\right\} .
$$

■ The kernel of this action is the set of elements that normalize every subgroup:

$$
\operatorname{Ker}(\phi)=\left\{g \in G \mid g^{-1} H g=H \text { for all } H \leq G\right\}=\bigcap_{H \leq G} N_{G}(H) .
$$

Groups acting on subgroups by conjugation

Let's apply our two theorems:

1. Orbit-stabilizer theorem. "the size of an orbit is the index of the stabilizer":

$$
\left|\mathrm{cl}_{G}(H)\right|=\left[G: N_{G}(H)\right]=\frac{|G|}{\left|N_{G}(H)\right|} .
$$

2. Orbit-counting theorem. "the number of orbits is the average number of elements fixed by a group element":
\#conjugacy classes of subgroups of $G=$ average size of a normalizer.

Groups acting on subgroups by conjugation

Here is an example of $G=D_{3}$ acting on its subgroups.
$\tau(1)=\langle 1\rangle \quad\langle r\rangle \quad\langle f\rangle \quad\langle r f\rangle \quad\left\langle r^{2} f\right\rangle \quad D_{3}$

$$
\tau(r) \quad\langle 1\rangle \quad\langle r\rangle \quad\langle f\rangle \stackrel{\rightharpoonup}{\kappa}\langle r f\rangle \stackrel{\rightharpoonup}{r}\left\langle r^{2} f\right\rangle \quad D_{3}
$$

$$
\tau\left(r^{2}\right)=\langle 1\rangle \quad\langle r\rangle \quad\langle f\rangle<\langle r f\rangle\left\langle r^{2} f\right\rangle \quad D_{3}
$$

$$
\tau(f)=\langle 1\rangle
$$

$$
\langle r\rangle \quad\langle f\rangle \quad\langle r f\rangle\left\langle r^{2} f\right\rangle \quad D_{3}
$$

$$
\tau(r f)=\langle 1\rangle
$$

$$
\tau\left(r^{2} f\right) \quad\langle 1\rangle \quad\langle r\rangle \quad\langle f\rangle \underset{\sim}{\rightleftarrows}\langle r f\rangle \quad\left\langle r^{2} f\right\rangle \quad D_{3}
$$

Observations

Do you see how to read stabilizers and fixed points off of the permutation diagram?

- $\operatorname{Ker}(\phi)=\langle 1\rangle$ consists of the row(s) with only fixed points.
- $\operatorname{Fix}(\phi)=\left\{\langle 1\rangle,\langle r\rangle, D_{3}\right\}$ consists of the column(s) with only fixed points.
- By the orbit-counting theorem, there are $|\operatorname{Orb}(\phi)|=24 /\left|D_{3}\right|=4$ conjugacy classes.

Groups acting on subgroups by conjugation

Consider the partitions of D_{3} by the left cosets of its six subgroups:

D_{3} / D_{3}

$D_{3} /\langle r\rangle$

$D_{3} /\langle f\rangle$

$D_{3} /\langle r f\rangle$

$D_{3} /\left\langle r^{2} f\right\rangle$

$D_{3} /\langle 1\rangle$

- fix (g) are the subgroups H for which " g appears in a blue coset of H "
- $\operatorname{Ker}(\phi)$ are elements that "only appear in blue cosets"
- By the orbit-counting theorem, the subgroups fall into

$$
|\operatorname{Orb}(\phi)|=\text { average } \# \text { check marks per row }=\frac{\text { total } \# \text { of blue entries }}{|G|}
$$

conjugacy classes.
Equivalently: how many full " G-boxes" the blue cosets can be rearranged to fill up.

Groups acting on subgroups by conjugation
Here is an example of $G=A_{4}=\langle(123),(12)(34)\rangle$ acting on its subgroups.

Let's take a moment to revisit our "three favorite examples" from Chapter 3.

$$
N=\langle(12)(34),(13)(24)\rangle, \quad H=\langle(123)\rangle, \quad K=\langle(12)(34)\rangle
$$

Groups acting on subgroups by conjugation

Here is the＂fixed point table＂of the action of A_{4} on its subgroups．

	$\langle e\rangle$	〈（123）＞	$\langle(124)\rangle$	$\langle(134)\rangle$	〈（234）＞	〈（12）（34）〉	$\langle(13)(24)\rangle$	〈（14）（23）〉	〈（12）（34），（13）（24）〉	A_{4}
e	\checkmark									
（123）	\checkmark	\checkmark							\checkmark	\checkmark
（132）	\checkmark	\checkmark							\checkmark	\checkmark
（124）	\checkmark		\checkmark						\checkmark	\checkmark
（142）	\checkmark		\checkmark						\checkmark	\checkmark
（134）	\checkmark			\checkmark					\checkmark	\checkmark
（143）	\checkmark			\checkmark					\checkmark	\checkmark
（234）	\checkmark				\checkmark				\checkmark	\checkmark
（243）	\checkmark				\checkmark				\checkmark	\checkmark
（12）（34）	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
（13）（24）	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
（14）（23）	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

By the orbit－counting theorem，there are $|\operatorname{Orb}(\phi)|=60 /\left|A_{4}\right|=5$ conjugacy classes．

Groups acting on cosets of H by multiplication

Fix a subgroup $H \leq G$. Then G acts on its right cosets by right-multiplication:

$$
\phi: G \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=\text { the permutation that sends each } H \times \text { to } H \times g .
$$

Let $H x$ be an element of $S=H \backslash G$ (the right cosets of H).

- There is only one orbit. For example, given two cosets $H x$ and $H y$,

$$
\phi\left(x^{-1} y\right) \text { sends } H x \longmapsto H x\left(x^{-1} y\right)=H y .
$$

- The stabilizer of $H x$ is the conjugate subgroup $x^{-1} H x$:

$$
\operatorname{stab}(H x)=\{g \in G \mid H \times g=H x\}=\left\{g \in G \mid H x g x^{-1}=H\right\}=x^{-1} H x .
$$

- There doesn't seem to be a standard term for the fixator of g :

$$
\operatorname{fix}(g)=\{H x \mid H \times g=H x\}=\left\{H x \mid x g x^{-1} \in H\right\} .
$$

- Assuming $H \neq G$, there are no fixed points of ϕ.
- The kernel of this action is the intersection of all conjugate subgroups of H :

$$
\operatorname{Ker}(\phi)=\bigcap_{x \in G} \operatorname{stab}(x)=\bigcap_{x \in G} x^{-1} H x .
$$

Notice that $\langle 1\rangle \leq \operatorname{Ker} \phi \leq H$, and $\operatorname{Ker}(\phi)=H$ iff $H \unlhd G$.

Groups acting on cosets of H by multiplication

The quotient process is done by collapsing the Cayley graph by the left cosets of H.
In contrast, this action is the result of collapsing the Cayley graph by the right cosets.

Subgroups of small index

Groups acting on cosets is a useful technique for establishing seemingly unrelated results.
Several of these involving showing that subgroups of "small index" are normal.
We've already seen that subgroups of index 2 are normal.
Of course, there are non-normal index-3 subgroups, like $\langle f\rangle \leq D_{3}$.
The following gives a sufficient condition for when index-3 subgroups are normal.

Proposition

If G has no subgroup of index 2 , then any subgroup of index 3 is normal.

Proof

Let $H \leq G$ with $[G: H]=3$.
Let G act on the cosets of H by multiplication, to get a nontrivial homomorphism

$$
\phi: G \longrightarrow S_{3} .
$$

$K:=\operatorname{Ker}(\phi) \leq H$ is the largest normal subgroup of G contained in H. By the FHT,

$$
G / K \cong \operatorname{Im}(\phi) \leq S_{3} .
$$

Subgroups of small index

Proof (contin.)

Thus, there are three cases for this quotient:

$$
G / K \cong S_{3}, \quad G / K \cong C_{3}, \quad G / K \cong C_{2}
$$

Visually, this means that we have one of the following:

By the corrdespondence theorem, $K \leq H \leq G$ implies $K / K \leq H / K \lesseqgtr G / K$.
Since G has no index-2 subgroup, only the middle case is possible (Why?).
This forces $K / K=H / K$, and so $K=H$ which is normal for multiple reasons.

Subgroups of small index

Proposition

Suppose $H \leq G$ and $[G: H]=p$, the smallest prime dividing $|G|$. Then $H \unlhd G$.

Proof

Let G act on the cosets of H by multiplication, to get a non-trivial homomorphism

$$
\phi: G \longrightarrow S_{p}
$$

The kernel $K=\operatorname{Ker}(\phi)$, is the largest normal subgroup of G such that $K \leq H \leq G$.
We'll show that $H=K$, or equivalently, that $[H: K]=1$. By the correspondence theorem:

Do you see why $q=1$?

A summary of our four actions

Thus far, we have seen four important (right) actions of a group G, acting:

- on itself by multiplication
- on itself by conjugation.
- on its subgroups by conjugation.

■ on the cosets of a fixed subgroup $H \leq G$ by multiplication.

set $S=$	G	subgroups of G	right cosets of H	
operation	multiplication	conjugation	conjugation	right multiplication
$\operatorname{orb}(s)$	G	$\mathrm{cl}_{G}(g)$	$\mathrm{cl}_{G}(H)$	all right cosets
$\operatorname{stab}(s)$	$\langle 1\rangle$	$C_{G}(g)$	$N_{G}(H)$	$x^{-1} H \times$
$\operatorname{fix}(g)$	G or \emptyset	$C_{G}(g)$	$\left\{H \mid g \in N_{G}(H)\right\}$	
$\operatorname{Ker}(\phi)$	$\langle 1\rangle$	$Z(G)$	$\bigcap_{H \leq G} N_{G}(H)$	largest norm. subgp. $N \leq H$
$\operatorname{Fix}(\phi)$	\emptyset	$Z(G)$	normal subgroups	none

Actions of automorphism groups

Let's revist the idea of automorophisms, but this time in a group action framework.
For any G, the automorphism group $\operatorname{Aut}(G)$ naturally acts on $S=G$ via a homomorphism

$$
\phi: \operatorname{Aut}(G) \longrightarrow \operatorname{Perm}(S), \quad \phi(\sigma)=\text { the permutation that sends each } g \mapsto \sigma(g) .
$$

Let's see an example. Any $\sigma \in \operatorname{Aut}\left(Q_{8}\right)$ must send i to an element of order 4: $\pm i, \pm j, \pm k$.
This leaves 4 choices for $\sigma(j)$. Therefore, $\left|\operatorname{Aut}\left(Q_{8}\right)\right| \leq 24$.
The inner automorphism group is $\operatorname{Inn}\left(Q_{8}\right)=\left\{\operatorname{Id}, \varphi_{i}, \varphi_{j}, \varphi_{k}\right\}$.

$$
\operatorname{lnn}\left(Q_{8}\right) \cong Q_{8} /\langle-1\rangle \cong V_{4}
$$

cosets of $Z\left(Q_{8}\right)$ are in bijection with inner automorphisms of Q_{8}
inner automorphisms of Q_{8} permute elements within conjugacy classes

All permutations of $\{i, j, k\}$ define an outer automorphism, and so $\operatorname{Out}\left(Q_{8}\right) \cong S_{3}$.

Automorphisms of Q_{8}

All three groups $\operatorname{Aut}\left(Q_{8}\right), \operatorname{Inn}\left(Q_{8}\right)$, and $\operatorname{Out}\left(Q_{8}\right) \cong \operatorname{Aut}\left(Q_{8}\right) / \operatorname{Inn}\left(Q_{8}\right)$ act on $S=Q_{8}$.

Overlaying these two graphs gives the action on $S=Q_{8}$ by

$$
\operatorname{Aut}\left(Q_{8}\right) \cong \operatorname{Inn}\left(Q_{8}\right) \rtimes \operatorname{Out}\left(Q_{8}\right) \cong V_{4} \rtimes S_{3} \cong S_{4}
$$

The group $\operatorname{Aut}\left(Q_{8}\right)$ also acts on the conjugacy classes:

Action equivalence

Let's recall the difference between left-conjugating and right conjugating:
"Left group action"

$$
\phi(a) \phi(b)=\phi(b a)
$$

"Right group action"

$$
\phi(a) \phi(b)=\phi(a b)
$$

There's a better way to describe left actions than the faux-homomorphic $\phi(a) \phi(b)=\phi(b a)$.
"Left group action"

"Right group action"

$$
\phi(a) \phi(b)=\phi(a b)
$$

Big idea

For every right action, there is an "equivalent" left-action where:

$$
\text { "pressing } g \text {-buttons, from L-to-R" } \Leftrightarrow \text { "pressing } g^{-1} \text {-buttons, from R-to-L". }
$$

Action equivalence, informally

Action equivalence is more general. Consider two groups acting on sets, say via

$$
\phi_{1}: G_{1} \longrightarrow \operatorname{Perm}\left(S_{1}\right), \quad \text { and } \quad \phi_{2}: G_{2} \longrightarrow \operatorname{Perm}\left(S_{2}\right)
$$

If these are "equivalent", then we'll need
■ a set bijection $\sigma: S_{1} \longrightarrow S_{2}$
■ a group isomorphism $\iota: G_{1} \longrightarrow G_{2}$.

Informally, these actions are equivalent if:

1. pressing the g_{1}-button in the G_{1}-switchboard, followed by
2. applying $\sigma: S_{1} \rightarrow S_{2}$ to get to the other graph
is the same as doing these steps in reverse order. That is,
3. applying $\sigma: S_{1} \rightarrow S_{2}$ to get to the other graph, then
4. pressing the $\iota\left(g_{1}\right)$-button on the G_{2}-switchboard.

Action equivalence, formally

Definition

Two actions $\phi_{1}: G_{1} \longrightarrow \operatorname{Perm}\left(S_{1}\right)$ and $\phi_{2}: G_{2} \longrightarrow \operatorname{Perm}\left(S_{2}\right)$ are equivalent if there is an isomorphism $\iota: G_{1} \rightarrow G_{2}$ and a bijection $\sigma: S_{1} \rightarrow S_{2}$ such that

$$
\sigma \circ \phi_{1}(g)=\phi_{2}(\iota(g)) \circ \sigma, \quad \text { for all } g \in G .
$$

We say that the resulting action graphs are action equivalent.

This can be expressed with a commutative diagram:

Action equivalence can be used to show that in our binary square example, we could have:

- defined $\phi(r)$ to rotate clockwise, and $\phi(f)$ to flip vertically
- used tiles with a and b, rather than 0 and 1
- read from right-to-left, rather than left-to-right, etc.

Every right action has an equivalent left action

G acting on. .	right action	equivalent left action
itself by multiplication	$x \mapsto x g$	$x \mapsto g^{-1} x$
itself by conjugation	$x \mapsto g^{-1} x g$	$x \mapsto g \times g^{-1}$
its subgroups by conjugation	$H \mapsto g^{-1} \mathrm{Hg}$	$H \mapsto g \mathrm{Hg}^{-1}$
cosets by multiplication	$H \mapsto H g$	$H \mapsto g^{-1} H$

Every right action has an equivalent left action

G acting on...	right action	equivalent left action
itself by multiplication	$x \mapsto x g$	$x \mapsto g^{-1} x$
itself by conjugation	$x \mapsto g^{-1} \times g$	$x \mapsto g \times g^{-1}$
its subgroups by conjugation	$H \mapsto g^{-1} \mathrm{Hg}$	$H \mapsto g \mathrm{Hg}^{-1}$
cosets by multiplication	$H \mapsto H g$	$H \mapsto g^{-1} H$

Recall that $a H=b H$ implies $\mathrm{Ha}^{-1}=\mathrm{Hb}^{-1}$.

Since $a H=b H \nRightarrow H a=H b$, the the map $x H \mapsto H x$ is not even well-defined.

Left and right actions of permutations

Recall the two "canonical" ways label a Cayley graph for $S_{3}=\langle(12),(23)\rangle$ with the set

$$
S=\{123,132,213,231,312,321\}
$$

In one, (ij) can be interpreted to mean
"swap the numbers in the $i^{\text {th }}$ and $j^{\text {th }}$ coordinates."
Alternatively, (ij) could mean
"swap the numbers i and j, regardless of where they are."

One of these is a left group action, and the other a right group action.

Left and right actions of permutations

Canonically associate elements of D_{3} with S_{3} via an isomorphism:

$$
\text { which acts on } S=\{123,132,213,231,312,321\}
$$

where

- "pressing the r-button" cyclically shifts the entries to the right,

■ "pressing the f-button" transposes the last two entries (coordinates):

$$
\pi(1) \pi(2) \pi(3) \stackrel{\phi(r)}{\longmapsto} \pi(3) \pi(1) \pi(2), \quad \pi(1) \pi(2) \pi(3) \stackrel{\phi(f)}{\longmapsto} \pi(1) \pi(3) \pi(2) .
$$

This defines a right action, by the homomorphism

$$
\phi_{R}: S_{3} \longrightarrow \operatorname{Perm}(S), \quad \phi_{R}(\tau): \pi(1) \pi(2) \pi(3) \longmapsto \pi(\tau(1)) \pi(\tau(2)) \pi(\tau(3))
$$

The equivalent left action permutes numbers, rather than entries

$$
\phi_{L}: S_{3} \longrightarrow \operatorname{Perm}(S), \quad \phi_{L}(\tau): \pi(1) \pi(2) \pi(3) \longmapsto \tau^{-1}(\pi(1)) \tau^{-1}(\pi(2)) \tau^{-1}(\pi(3)) .
$$

Left and right actions of permutations

right action "permutes positions"

$\pi(1) \pi(2) \pi(3)=312 \longmapsto \pi(\tau(1)) \pi(\tau(2)) \pi(\tau(3))=321$

$$
\pi^{-1}(1) \pi^{-1}(2) \pi^{-1}(3)=231 \stackrel{\phi_{L}(\tau)}{\downarrow} \rightarrow \tau^{-1}\left(\pi^{-1}(1)\right) \tau^{-1}\left(\pi^{-1}(2)\right) \tau^{-1}\left(\pi^{-1}(3)\right)=321
$$

left action "permutes numbers"

Isomorphisms of G-sets

Just like we did for groups, we can formalize what it means for G-sets to be isomorphic. Which of the following should represent isomorphic D_{4}-sets?

Should the following D_{4}-sets be isomorphic?

Let's start by first classifying action diagrams for a fixed generating set.

Classification of G-sets

Natural question

Given a group G, what are its possible (connected) G-sets?

For example, which of the following can arise as an orbit of an action by $G=D_{4}$?

Definition

An action $\phi: G \rightarrow \operatorname{Perm}(S)$ is

- transitive if it has only one orbit: ("graph is connected")
- free if $\operatorname{stab}(s)=\langle e\rangle$ for all $s \in S$. ("uncollapsed - no nontrivial loops")
- faithful if $\operatorname{Ker}(\phi)=\langle e\rangle$.

In this language our question becomes: "classify all transitive G-actions" (or G-sets).

An example of a free action that is not transitive

The group $S_{3}=\langle(12),(23)\rangle$ acts on permutations 1234, via $\phi: S_{3} \rightarrow \operatorname{Perm}(S)$, where

- $\phi((12))=$ the permutation that swaps the 1st and 2 nd coordinates
- $\phi((23))=$ the permutation that swaps the 2nd and 3rd coordinates

Simply transitive actions

Definition

An action $\phi: G \rightarrow \operatorname{Perm}(S)$ is simply transitive if it is transitive and free.

Here are some simply transitive actions that we have seen.

Proposition

Every simply transitive G-action is equivalent to G acting on itself by multiplication.

This just says that simply transitive G-sets are groups!

Transitive actions

All transtive actions can be constructed by collapsing Cayley graphs.
But what to collapse? Recall the bijection between nodes in orb(s) and cosets of stab(s).

collapse left cosets of H (not an action)

collapse right cosets of H (an action)

Proposition

Every transitive G-action is equivalent to G acting on a set of cosets by multplication.

Transitive actions

Proposition

Every transitive G-action is equivalent to G acting on a set of cosets by multplication.
Proof sketch. Let $\iota: G \rightarrow G$ be the identity, fix $s \in S$, let $H=\operatorname{stab}(s)$, and define

$$
\sigma: S \longrightarrow H \backslash G, \quad \sigma: s . \phi(x) \longmapsto H x
$$

Show that σ is a well-defined bijection, and then the proof follows because:

The transitive D_{4}-sets: collapsing by right cosets

The transitive D_{6}-sets: collapsing by right cosets

Simply transitive actions from finite reflection groups

One place where simply transitive actions arise is from tilings.
The group $\langle A, B \mid A B=B A\rangle \cong \mathbb{Z} \times \mathbb{Z}$ acts simply transitively on the unit squares in \mathbb{Z}^{2}.

	$A^{-1} B^{2}$	B^{2}	$A B^{2}$	$A^{2} B^{2}$	
	$A^{-1} B$	B	$A B$	$A^{2} B$	
	A^{-1}	1	A	A^{2}	
	$A^{-1} B^{-1}$	B^{-1}	$A B^{-1}$	$A^{2} B^{-1}$	

The shaded region is called a fundamental chamber.

Simply transitive actions from finite reflection groups

The dihedral group $D_{3}=\left\langle A, B \mid A^{2}=B^{2}=(A B)^{3}=1\right\rangle$ acts simply transitively on the six regions of a hexagon.

"left action"

"right action"

"(right) Cayley graph"

The dihedral group D_{4} acts simply transitively on the eight regions of a square.

"right action"

" (right) Cayley graph"

Simply transitive actions from finite reflection groups

In both previous examples, adding a third reflection generates a tiling of the plane.
The resulting affine groups, $\operatorname{Aff}\left(D_{3}\right)$ and $\operatorname{Aff}\left(D_{4}\right)$, act simply transitively on the chambers.

Simply transitive actions and affine Weyl groups

The group $\operatorname{Aff}\left(D_{3}\right)$ is better known as the affine Weyl group of type A_{2}.
It acts simply transitively on the chambers of the following tiling of \mathbb{R}^{2}.

It has presentation

$$
W\left(\tilde{A}_{2}\right)=\operatorname{Aff}\left(D_{3}\right)=\left\langle A, B \mid A^{2}=B^{2}=C^{2}=(A B)^{3}=(A C)^{3}=(B C)^{3}=1\right\rangle .
$$

Simply transitive actions and affine Weyl groups

The group $\operatorname{Aff}\left(D_{4}\right)$ is better known as the affine Weyl group of type C_{2}.
It acts simply transitively on the chambers of the following tiling of \mathbb{R}^{2}.

It has presentation

$$
W\left(\tilde{C}_{2}\right)=\operatorname{Aff}\left(D_{4}\right)=\langle A, B| A^{2}=B^{2}=C^{2}\left|(A B)^{4}=(A C)^{4}=(B C)^{2}=1\right\rangle .
$$

Weyl groups and Dynkin diagrams

The presentations of the affine Weyl groups are encoded by Dynkin diagrams.
Nodes s_{i} are generators, and the labeled edges $m_{i j}$ describe relations: $\left(s_{i} s_{j}\right)^{m_{i j}}=1$.

$$
\operatorname{Aff}\left(D_{6}\right)=W\left(\tilde{G}_{2}\right)
$$

This last example is the affine version of $D_{6}=\left\langle A, B \mid A^{2}=B^{2}=(A B)^{6}=1\right\rangle$ acting simply transitively on the 12 regions of a hexagon.

One last affine Weyl group

The group $\operatorname{Aff}\left(D_{6}\right)$ is better known as the the affine Weyl group of type G_{2}.
It acts simply transitively on the chambers of the following tiling of \mathbb{R}^{2}.

It has presentation

$$
W\left(\tilde{G}_{2}\right)=\operatorname{Aff}\left(D_{6}\right)=\left\langle A, B, C \mid A^{2}=B^{2}=C^{2}=(A B)^{6}=(A C)^{3}=(B C)^{2}=1\right\rangle .
$$

Coxeter groups and tilings of hyperbolic space
A Coxeter group is a group generated by "reflections", with presentation

$$
W=\left\langle s_{1}, \ldots, s_{n} \mid s_{i}^{2}=1,\left(s_{i} s_{j}\right)^{m_{i j}}=1\right\rangle
$$

Like Weyl groups, this can be encoded by a Coxeter graph.
Some Coxeter groups act simply transitively on chambers of hyperbolic tilings.

$$
\operatorname{Aff}\left(D_{6}\right)=W\left(\tilde{G}_{2}\right)
$$

A hyperbolic Coxeter group

A simply transitive action of $\mathrm{PSL}_{2}(\mathbb{Z})$
The projective special linear group

$$
\operatorname{PSL}_{2}(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z}) /\langle-\mid\rangle, \quad \text { where } \mathrm{SL}_{2}(\mathbb{Z})=\langle\underbrace{\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]}_{S}, \underbrace{\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]}_{T}\rangle
$$

defines a tiling of hyperbolic ideal triangles in the upper half-plane via

$$
S: z \longmapsto \frac{0 z-1}{z+0}=-\frac{1}{z}, \quad \text { and } \quad T: z \longmapsto \frac{z+1}{0 z+1}=z+1
$$

Equivariance and morphisms of G-sets

Key idea

- Action equivalence involves an isomorphism $\iota: G_{1} \rightarrow G_{2}$ and bijection $\sigma: S_{1} \rightarrow S_{2}$.
- Equivariant bijections ($\iota=\mathrm{Id}$) define G-set isomorphisms.

■ Equivariant maps ($\iota=$ Id, but σ need not be bijective) define G-set homomorphisms.

Definition

Suppose G acts on S_{i} via $\phi_{i}: G \rightarrow \operatorname{Perm}\left(S_{i}\right)$ for $i=1$, 2. A G-equivariant map is a function $\sigma: S_{1} \rightarrow S_{2}$ such that $\sigma \circ \phi_{1}(g)=\phi_{2}(g) \circ \sigma$, for all $g \in G$:

Special cases:

- Equivariant bijection (G-set isomorphism): when σ is bijective.

■ If $S:=S_{1}=S_{2}$, then we get the group $\operatorname{Aut}_{G}(S)$ of G-set automorphisms.

G-set automorphisms as symmetries of the action graph
Let $S=G \backslash H$, for $G=D_{6}$ and $H=\langle f\rangle$.

Key idea
The action and bijection clearly commute upon thinking of:

- the action $\phi(r)$ as right-multiplying $H r^{i}$ by r,
- the bijection σ as left-multiplying $H r^{i}$ by r^{3}. (This works because $r^{3} \in N_{G}(H)$).

G-set automorphisms

What do you notice about normalizers vs. symmetries of the actions graphs?

G-set automorphisms

G-set automorphisms

$$
\begin{gathered}
H=\langle((12)(34))\rangle \leq S_{4}=G \\
\operatorname{Aut}_{G}(H \backslash G) \cong N_{G}(H) / H \cong V_{4}
\end{gathered}
$$

The G-set automorphism group

Theorem

For any $H \leq G$, the G-set automorphism group of $S=H \backslash G$ is

$$
\operatorname{Aut}_{G}(S) \cong N_{G}(H) / H
$$

Here's how the proof will go, given $\sigma \in \operatorname{Aut}_{G}(S)$, and $S=H \backslash G$:

1. Lemma 1: $\sigma: H g \mapsto H x g$, for some fixed $x \in G$ (i.e., $\sigma=\phi(x))$.
2. Lemma 2: $\phi(x) \in \operatorname{Aut}_{G}(S)$ iff $x \in N_{G}(H)$. That is, $\sigma: H g \mapsto x H g$.
3. FHT: Two $\phi(x)=\phi\left(x^{\prime}\right)$ iff x, x^{\prime} are in the same coset of H.

$\operatorname{Aut}_{G}(N \backslash G) \cong N_{G}(N) / N \cong D_{3}$
$\operatorname{Aut}_{G}(H \backslash G) \cong N_{G}(H) / H \cong C_{2}$
$\operatorname{Aut}_{G}(K \backslash G) \cong N_{G}(K) / K \cong\langle 1\rangle$

The G-set automorphism group

Lemma 1

Any G-set automorphism $\sigma \in \operatorname{Aut}_{G}(S)$, for $S=H \backslash G$, is determined by the image of H :

$$
\text { if } \sigma: H \mapsto H x \text {, then } \sigma: H g \mapsto H x g \text {, for all } g \in G .
$$

Proof

Since σ is G-equivariant, it commutes with each $\phi(g) \in \operatorname{Perm}(S)$.
That is, the following diagram commutes:

It follows that $\sigma: H g \mapsto H x g$, as claimed.

The G-set automorphism group

Lemma 2

Let $S=H \backslash G$. The map of right cosets

$$
\sigma_{x}: S \longrightarrow S, \quad \sigma_{x}: H g \longmapsto H x g
$$

is a G-set automorphism iff $x \in N_{G}(H)$.

Proof

" \Rightarrow ": Suppose $\sigma_{x} \in \operatorname{Aut}_{G}(H \backslash G)$, and take $h \in H$. We have:

That is, for every $h \in H$,

$$
H=H x h x^{-1} \quad \Leftrightarrow \quad x h x^{-1} \in H \quad \Leftrightarrow \quad x \in N_{G}(H) .
$$

The G-set automorphism group

Lemma 2

Let $S=H \backslash G$. The map of right cosets

$$
\sigma_{x}: S \longrightarrow S, \quad \sigma_{x}: H g \longmapsto H x g
$$

is a G-set automorphism iff $x \in N_{G}(H)$.

Proof

" \Leftarrow ": Suppose $x \in N_{G}(H)$, and pick $g \in G$.
By Lemma 1: $\sigma_{x}: H g \mapsto H x g=x H g$.
The operations σ_{x} (left-multiplying by x), and $\phi(g)$ (right-multiplying by g) clearly commute.

The G-set automorphism group

Theorem

If G acts on the set $S=H \backslash G$ of right cosets of $H \leq G$, then

$$
\operatorname{Aut}_{G}(S) \cong N_{G}(H) / H .
$$

Proof

We'll apply the FHT to the map

$$
f: N_{G}(H) \longrightarrow \operatorname{Aut}_{G}(S), \quad x \longmapsto \sigma_{x},
$$

where $\sigma_{x}: \mathrm{Hg} \longmapsto \mathrm{Hxg}$.
Homomorphism: Straightforward exercise.
Onto: Immediate from Lemma 2.
$\underline{\operatorname{Ker}(\phi)=H} . " \subseteq$ ":

$$
x \in \operatorname{Ker}(\phi) \quad \Leftrightarrow \quad H g=H x g, \forall g \in G \quad \Leftrightarrow \quad H=H x \quad \Leftrightarrow \quad x \in H .
$$

"?": If $h \in H$, then $\sigma_{h}: H g \mapsto H h g=H x$.
The result now follows from the FHT.

G-set homomorphisms

Dropping bijectivity of $\sigma: S_{1} \rightarrow S_{2}$ defines a G-set homomorphism, or G-equivariant map.
Consider this example of D_{6}-sets:

This can be described by the following commutative diagram:

Key idea

We say that "the map σ commutes with the action of the group."

G-set homomorphisms

Here is that example again for $G=D_{6}$ and subgroups:
$H=\langle f\rangle$ (moderately unnormal), $K=\left\langle r^{3}, f\right\rangle=H \cup H r^{3}=N_{G}(H), \quad$ (fully unnormal)

The orbit-stabilizer theorem, restated

FHT for G-sets

If $\phi: G \rightarrow \operatorname{Perm}(S)$ is a transitive action and $s \in S$, then S is isomorphic to set of cosets of the stabilizer, as G-sets.

A creative application of a group action

Cauchy's theorem

If p is a prime dividing $|G|$, then G has an element (and hence a subgroup) of order p.

Proof

Let P be the set of ordered p-tuples of elements from G whose product is e :

$$
\left(x_{1}, x_{2}, \ldots, x_{p}\right) \in P \quad \text { iff } \quad x_{1} x_{2} \cdots x_{p}=e
$$

Observe that $|P|=|G|^{p-1}$. (We can choose x_{1}, \ldots, x_{p-1} freely; then x_{p} is forced.)
The group \mathbb{Z}_{p} acts on P by cyclic shift:

$$
\phi: \mathbb{Z}_{p} \longrightarrow \operatorname{Perm}(P), \quad\left(x_{1}, x_{2}, \ldots, x_{p}\right) \stackrel{\phi(1)}{\longrightarrow}\left(x_{2}, x_{3} \ldots, x_{p}, x_{1}\right) .
$$

The set P is partitioned into orbits, each of size $|\operatorname{orb}(s)|=\left[\mathbb{Z}_{p}: \operatorname{stab}(s)\right]=1$ or p.
The only way that the orbit of $\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ can have size 1 is if $x_{1}=\cdots=x_{p}$.
Clearly, $(e, \ldots, e) \in P$ is a fixed point.
The $|G|^{p-1}-1$ other elements in P sit in orbits of size 1 or p.
Since $p \nmid|G|^{p-1}-1$, there must be other orbits of size 1 . Thus, some $(x, \ldots, x) \in P$, with $x \neq e$ satisfies $x^{p}=e$.

Classification of groups of order 6

By Cauchy's theorem, every group of order 6 must have:

- an element a of order 3
- an element b of order 2 .

Clearly, $G=\langle a, b\rangle$, and so G must have the following "partial Cayley graph":

It is now easy to see that up to isomorphism, there are only 2 groups of order 6:

Exercise. Classify groups of order 8 with a similar argument.

p-groups and the Sylow theorems

Definition

A p-group is a group whose order is a power of a prime p. A p-group that is a subgroup of a group G is a p-subgroup of G.

Notational convention

Throughout, G will be a group of order $|G|=p^{n} \cdot m$, with $p \nmid m$. That is, p^{n} is the highest power of p dividing $|G|$.

There are three Sylow theorems, and loosely speaking, they describe the following about a group's p-subgroups:

1. Existence: In every group, p-subgroups of all possible sizes exist.
2. Relationship: All maximal p-subgroups are conjugate.
3. Number: Strong restrictions on the number of p-subgroups a group can have.

Together, these place strong restrictions on the structure of a group G with a fixed order.

p-groups

Before we introduce the Sylow theorems, we need to better understand p-groups.
Recall that a p-group is any group of order p^{n}. Examples, of 2-groups that we've seen include $C_{1}, C_{4}, V_{4}, D_{4}$ and $Q_{8}, C_{8}, C_{4} \times C_{2}, D_{8}, S_{8}, Q_{16}, S_{8}, D_{8}, \ldots$

p-group Lemma

If a p-group G acts on a set S via $\phi: G \rightarrow \operatorname{Perm}(S)$, then

$$
|\operatorname{Fix}(\phi)| \equiv_{p}|S| .
$$

Proof (sketch)

p-groups

Normalizer lemma, Part 1

If H is a p-subgroup of G, then

$$
\left[N_{G}(H): H\right] \equiv_{p}[G: H] .
$$

Approach:

■ Let H (not G !) act on the (right) cosets of H by (right) multiplication.

Cosets of H in $N_{G}(H)$ are the fixed points
■ Apply our lemma: $|\operatorname{Fix}(\phi)| \equiv_{p}|S|$.
p-groups

Normalizer lemma, Part 1

If H is a p-subgroup of G, then

$$
\left[N_{G}(H): H\right] \equiv_{p}[G: H] .
$$

Proof

Let $S=H \backslash G=\{H x \mid x \in G\}$. The group H acts on S by right-multiplication, via $\phi: H \rightarrow \operatorname{Perm}(S)$, where

$$
\phi(h)=\text { the permutation sending each } H \times \text { to } H x h .
$$

The fixed points of ϕ are the cosets $H x$ in the normalizer $N_{G}(H)$:

$$
\begin{aligned}
H \times h=H x, \quad \forall h \in H \quad & \Longleftrightarrow \quad H x h x^{-1}=H, \quad \forall h \in H \\
& \Longleftrightarrow x h x^{-1} \in H, \quad \forall h \in H \\
& \Longleftrightarrow \quad x \in N_{G}(H) .
\end{aligned}
$$

Therefore, $|\operatorname{Fix}(\phi)|=\left[N_{G}(H): H\right]$, and $|S|=[G: H]$. By our p-group Lemma,

$$
|\operatorname{Fix}(\phi)| \equiv_{p}|S| \quad \Longrightarrow \quad\left[N_{G}(H): H\right] \equiv_{p}[G: H] .
$$

p-groups

Here is a picture of the action of the p-subgroup H on the set $S=H \backslash G$, from the proof of the normalizer lemma.

p-subgroups

Recall that $H \leq N_{G}(H)$ (always), and H is fully unnormal if $H=N_{G}(H)$.

Normalizer lemma, Part 2

Suppose $|G|=p^{n} m$, and $H \leq G$ with $|H|=p^{i}<p^{n}$. Then $H \lesseqgtr N_{G}(H)$, and the index $\left[N_{G}(H): H\right]$ is a multiple of p.
H is not "fully unnormal":

$$
H \leq N_{G}(H) \leq G
$$

Important corollaries

- p-groups cannot have any fully unnormal subgroups (i.e., $H \lesseqgtr N_{G}(H)$).

■ In any finite group, the only fully unnormal p-subgroups are maximal.

Normalizers of p-subgroups

Let H be properly contained in a maximal p-subgroup $P \lesseqgtr G$.

- The normalizer of H must grow in P (and hence in G)
- The normalizer of P need not grow in G.

$$
H \leq N_{P}(H) \leq N_{G}(H)
$$

it may happen that $P=N_{G}(P)$

Proof of the normalizer lemma

Normalizer lemma, Part 2

Suppose $|G|=p^{n} m$, and $H \leq G$ with $|H|=p^{i}<p^{n}$. Then $H \leq N_{G}(H)$, and the index $\left[N_{G}(H): H\right]$ is a multiple of p.

Proof

Since $H \unlhd N_{G}(H)$, we can create the quotient map

$$
\pi: N_{G}(H) \longrightarrow N_{G}(H) / H, \quad \pi: g \longmapsto g H
$$

The size of the quotient group is $\left[N_{G}(H): H\right.$], the number of cosets of H in $N_{G}(H)$.
By the normalizer lemma Part 1, $\left[N_{G}(H): H\right] \equiv_{p}[G: H]$. By Lagrange's theorem,

$$
\left[N_{G}(H): H\right] \equiv_{p}[G: H]=\frac{|G|}{|H|}=\frac{p^{n} m}{p^{i}}=p^{n-i} m \equiv_{p} 0
$$

Therefore, $\left[N_{G}(H): H\right]$ is a multiple of p, so $N_{G}(H)$ must be strictly larger than H.

The Sylow theorems

Recall the following question that we asked earlier in this course.

Open-ended question

What group structural properties are possible, what are impossible, and how does this depend on $|G|$?

One approach is to decompose large groups into "building block subgroups." For example: given a group of order $72=2^{3} \cdot 3^{2}$, what can we say about its 2 -subgroups and 3-subgroups?.

This is the idea behind the Sylow theorems, developed by Norwegian mathematician Peter Sylow (1832-1918).

The Sylow theorems address the following questions of a finite group G :

1. How big are its p-subgroups?
2. How are the p-subgroups related?
3. How many p-subgroups are there?
4. Are any of them normal?

An example: groups of order 12

The Sylow theorems can be used to classify all groups of order 12 .

We've already seen them all.

What patterns do you notice about the 2-groups and 3-groups, that might generalize to all p-subgroups?

The Sylow theorems

Notational convention

Througout, G will be a group of order $|G|=p^{n} \cdot m$, with $p \nmid m$.
That is, p^{n} is the highest power of p dividing $|G|$.
A subgroup of order p^{n} is called a Sylow p-subgroup.
Let $\mathrm{Syl}_{p}(G)$ denote the set of Sylow p-subgroups, and $n_{p}:=\left|\operatorname{Syl}{ }_{p}(G)\right|$.

There are three Sylow theorems, and loosely speaking, they describe the following about a group's p-subgroups:

1. Existence: In every group, p-subgroups of all possible sizes exist, and they're "nested".
2. Relationship: All maximal p-subgroups are conjugate.
3. Number: There are strong restrictions on n_{p}, the number of Sylow p-subgroups.

Together, these place strong restrictions on the structure of a group G with a fixed order.

Our unknown group of order 12

Throughout, we will have a running example, a "mystery group" G of order $12=2^{2} \cdot 3$.
We already know a little bit about G. By Cauchy's theorem, it must have:

- an element a of order 2 , and
- an element b of order 3 .

Using only the fact that $|G|=12$, we will unconver as much about its structure as we can.

The $1^{\text {st }}$ Sylow theorem: existence of p-subgroups

First Sylow theorem

G has a subgroup of order p^{k}, for each p^{k} dividing $|G|$.
Also, every non-Sylow p-subgroup sits inside a larger p-subgroup.

Proof

Take any $H \leq G$ with $|H|=p^{i}<p^{n}$. We know $H \unlhd N_{G}(H)$ and p divides $\left|N_{G}(H) / H\right|$.
Find an element $a H$ of order p. The union of cosets in $\langle a H\rangle$ is a subgroup of order p^{i+1}. Order: p^{n}

Our unknown group of order 12

By the first Sylow theorem, $\langle a\rangle$ is contained in a subgroup of order 4, which could be V_{4} or C_{4}, or possibly both.

The $2^{\text {nd }}$ Sylow theorem: relationship among p-subgroups

Second Sylow theorem

Any two Sylow p-subgroups are conjugate (and hence isomorphic).
We'll actually prove a stronger version, which easily implies the 2nd Sylow theorem.

Strong second Sylow theorem

Let $H \in \operatorname{Syl}(G)$, and $K \leq G$ any p-subgroup. Then K is conjugate to a subgroup of H.

Index: 1
m
$p^{n-i} m$
$p^{n-1} m$
$p^{n} m$

\ddots

Order: $p^{n} m$
p^{n}
p^{i}
p

1

The $2^{\text {nd }}$ Sylow theorem: All Sylow p-subgroups are conjugate

Strong second Sylow theorem

Let H be a Sylow p-subgroup, and $K \leq G$ any p-subgroup. Then K is conjugate to some subgroup of H.

Proof

Let $S=H \backslash G=\{H g \mid g \in G\}$, the set of right cosets of H.
The group K acts on S by right-multiplication, via $\phi: K \rightarrow \operatorname{Perm}(S)$, where

$$
\phi(k)=\text { the permutation sending each } \mathrm{Hg} \text { to } \mathrm{Hgk} \text {. }
$$

A fixed point of ϕ is a coset $H g \in S$ such that

$$
\begin{aligned}
H g k=H g, \quad \forall k \in K \quad & \Longleftrightarrow \quad H g g^{-1}=H, \quad \forall k \in K \\
& \Longleftrightarrow \quad \mathrm{gg}^{-1} \in H, \quad \forall k \in K \\
& \Longleftrightarrow \quad \mathrm{Kg}^{-1} \subseteq H .
\end{aligned}
$$

Thus, if we can show that ϕ has a fixed point Hg , we're done!
All we need to do is show that $|\operatorname{Fix}(\phi)| \not \equiv_{p} 0$. By the p-group Lemma,

$$
|\operatorname{Fix}(\phi)| \equiv_{p}|S|=[G: H]=m \not \equiv_{p} 0 .
$$

Our unknown group of order 12

By the second Sylow theorem, all Sylow p-subgroups are conjugate, and hence isomorphic.
This eliminates the following subgroup lattice of a group of order 12 .

Example: A_{5} has no nontrival proper normal subgroups

The normalizer of the normalizer

Notice how in A_{5} :

- all Sylow p-subgroups are moderately unnormal
- the normalizer of each Sylow p-subgroup is fully unnormal. That is:

$$
N_{G}\left(N_{G}(P)\right)=N_{G}(P)
$$

Proposition

Let P be a non-normal Sylow p-subgroup of G. Then its normalizer is fully unnormal.

Proof

We'll verify the equivalent statement of $N_{G}\left(N_{G}(P)\right)=N_{G}(P)$.
Note that P is a normal Sylow p-subgroup of $N_{G}(P)$.
By the 2nd Sylow theorem, P is the unique Sylow p-subgroup of $N_{G}(P)$.
Take an element x that normalizes $N_{G}(P)$ (i.e., $x \in N_{G}\left(N_{G}(P)\right)$. We'll show that it also normalizes P. By definition, $x N_{G}(P) x^{-1}=N_{G}(P)$, and so

$$
P \leq N_{G}(P) \quad \Longrightarrow \quad x P x^{-1} \leq x N_{G}(P) x^{-1}=N_{G}(P)
$$

But $x P x^{-1}$ is also a Sylow p-subgroup of $N_{G}(P)$, and by uniqueness, $x P x^{-1}=P$.

The $3^{\text {rd }}$ Sylow theorem: number of p-subgroups

Third Sylow theorem

Let n_{p} be the number of Sylow p-subgroups of G. Then

$$
n_{p} \text { divides }|G| \quad \text { and } \quad n_{p} \equiv_{p} 1
$$

(Note that together, these imply that $n_{p} \mid m$, where $|G|=p^{n} \cdot m$.)

Proof

Take $H \in \operatorname{Syl}_{p}(G)$. By the 2nd Sylow theorem, $n_{p}=\left|\mathrm{cl}_{G}(H)\right|=\left[G: N_{G}(H)\right]| | G \mid$. The subgroup H acts on $S=\operatorname{Syl}_{p}(G)$ by conjugation, via $\phi: G \rightarrow \operatorname{Perm}(S)$, where

$$
\phi(h)=\text { the permutation sending each } K \text { to } h^{-1} K h .
$$

Goal: show that H is the unique fixed point.

$$
|\operatorname{Fix}(\phi)|=1 \quad \text { other Sylow p-subgroups are in larger orbits }
$$

The $3^{\text {rd }}$ Sylow theorem: number of p-subgroups

Proof (cont.)

Goal: show that H is the unique fixed point.
Let $K \in \operatorname{Fix}(\phi)$. Then $K \leq G$ is a Sylow p-subgroup satisfying

$$
h^{-1} K h=K, \quad \forall h \in H \quad \Longleftrightarrow \quad H \leq N_{G}(K) \leq G .
$$

- H and K are p-Sylow in G, and in $N_{G}(K)$.
- H and K are conjugate in $N_{G}(K)$. (2nd Sylow thm.)
- $K \unlhd N_{G}(K)$, thus is only conjugate to itself in $N_{G}(K)$.

Thus, $K=H$. That is, $\operatorname{Fix}(\phi)=\{H\}$.
By the p-group Lemma, $n_{p}:=|S| \equiv_{p}|\operatorname{Fix}(\phi)|=1$.

$|\operatorname{Fix}(\phi)|=1 \quad$ other Sylow p-subgroups are in larger orbits

total \# Sylow p-subgroups $=n_{p}=|S| \equiv_{p}|\operatorname{Fix}(\phi)|=1$

Summary of the proofs of the Sylow theorems

For the 1st Sylow theorem, we started with $H=\{e\}$, and inductively created larger subgroups of size p, p^{2}, \ldots, p^{n}.

For the $2^{\text {nd }}$ and $3^{\text {rd }}$ Sylow theorems, we used a clever group action and then applied one or both of the following:
(i) orbit-stabilizer theorem. If G acts on S, then $|\operatorname{orb}(s)| \cdot|\operatorname{stab}(s)|=|G|$.
(ii) p-group lemma. If a p-group acts on S, then $|S| \equiv_{p}|\operatorname{Fix}(\phi)|$.

To summarize, we used:
S2 The action of $K \in \operatorname{Syl}_{p}(G)$ on $S=H \backslash G$ by right multiplication for some other $H \in \operatorname{Syl}_{p}(G)$.

S3a The action of G on $S=\operatorname{Syl}_{p}(G)$, by conjugation.
S3b The action of $H \in \operatorname{Syl}_{p}(G)$ on $S=\operatorname{Syl}_{p}(G)$, by conjugation.

Our mystery group order 12

By the 3rd Sylow theorem, every group G of order $12=2^{2} \cdot 3$ must have:

- n_{3} Sylow 3 -subgroups, each of order 3.

$$
n_{3} \mid 4, \quad n_{3} \equiv 1 \quad(\bmod 3) \quad \Longrightarrow \quad n_{3}=1 \text { or } 4 .
$$

- n_{2} Sylow 2-subgroups of order $2^{2}=4$.

$$
n_{2} \mid 3, \quad n_{2} \equiv 1 \quad(\bmod 2) \quad \Longrightarrow \quad n_{2}=1 \text { or } 3
$$

But both are not possible! (There aren't enough elements.)

The five groups of order 12
With a litte work and the Sylow theorems, we can classify all groups of order 12.

We've already seen them all. Here are their subgroup lattices.

Note that all of these decompose as a direct or semidirect product of Sylow subgroups.

Simple groups and the Sylow theorems

Definition

A group G is simple if its only normal subgroups are G and $\langle e\rangle$.

Simple groups are to groups what primes are to integers, and are essential to understand.
The Sylow theorems are very useful for establishing statements like:
"There are no simple groups of order k (for some k)."
Since all Sylow p-subgroups are conjugate, the following result is immediate.

Remark

A Sylow p-subgroup is normal in G iff it's the unique Sylow p-subgroup (that is, if $n_{p}=1$).

Thus, if we can show that $n_{p}=1$ for some p dividing $|G|$, then G cannot be simple.
For some $|G|$, this is harder than for others, and sometimes it's not possible.

Tip

When trying to show that $n_{p}=1$, it's usually helpful to analyze the largest primes first.

An easy example

We'll see three examples of showing that groups of a certain size cannot be simple, in successive order of difficulty.

Proposition

There are no simple groups of order 84.

Proof

Since $|G|=84=2^{2} \cdot 3 \cdot 7$, the third Sylow theorem tells us:

- n_{7} divides $2^{2} \cdot 3=12$ (so $n_{7} \in\{1,2,3,4,6,12\}$)
- $n_{7} \equiv_{7} 1$.

The only possibility is that $n_{7}=1$, so the Sylow 7 -subgroup must be normal.

Observe why it is beneficial to use the largest prime first:

- n_{3} divides $2^{2} \cdot 7=28$ and $n_{3} \equiv_{3} 1$. Thus $n_{3} \in\{1,2,4,7,14,28\}$.
- n_{2} divides $3 \cdot 7=21$ and $n_{2} \equiv 21$. Thus $n_{2} \in\{1,3,7,21\}$.

A harder example

Proposition

There are no simple groups of order 351.

Proof

Since $|G|=351=3^{3} \cdot 13$, the third Sylow theorem tells us:

- n_{13} divides $3^{3}=27$ (so $n_{13} \in\{1,3,9,27\}$)
- $n_{13} \equiv_{13} 1$.

The only possibilies are $n_{13}=1$ or 27 .
A Sylow 13-subgroup P has order 13, and a Sylow 3-subgroup Q has order $3^{3}=27$. Therefore, $P \cap Q=\{e\}$.

Suppose $n_{13}=27$. Every Sylow 13-subgroup contains 12 non-identity elements, and so G must contain $27 \cdot 12=324$ elements of order 13 .

This leaves $351-324=27$ elements in G not of order 13. Thus, G contains only one Sylow 3-subgroup (i.e., $n_{3}=1$) and so G cannot be simple.

The hardest example

Proposition

There are no simple groups of order $24=2^{3} \cdot 3$.

From the 3rd Sylow theorem, we can only conclude that $n_{2} \in\{1,3\}$ and $n_{3}=\{1,4\}$.
Let H be a Sylow 2-subgroup, which has relatively "small" index: $[G: H]=3$.

Lemma

If G has a subgroup of index $[G: H]=n$, and $|G|$ does not divide $n!$, then G is not simple.

Proof

Let G act on the right cosets of H (i.e., $S=H \backslash G$) by right-multiplication:

$$
\phi: G \longrightarrow \operatorname{Perm}(S) \cong S_{n}, \quad \phi(g)=\text { the permutation that sends each } H \times \text { to } H \times g .
$$

Recall that $\operatorname{Ker}(\phi) \unlhd G$, and is the intersection of all conjugate subgroups of H :

$$
\langle e\rangle \leq \operatorname{Ker}(\phi)=\bigcap_{x \in G} x^{-1} H x \lesseqgtr G
$$

If $\operatorname{Ker}(\phi)=\langle e\rangle$ then $\phi: G \hookrightarrow S_{n}$ is an embedding, which is impossible because $|G| \nmid n!$.

