Chapter 9: Domains

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120/4130, Visual Algebra

Divisibility and factorization

Previously, we saw how to extend a familiar construction (fractions) from \mathbb{Z} to other commutative rings.

Now, we'll do the same for other basic features of the integers.

Blanket assumption

Unless otherwise stated, R is an integral domain, and $R^{*}:=R \backslash\{0\}$.
The integers have several basic properties that we usually take for granted:

- every nonzero number can be factored uniquely into primes;
- any two numbers have a unique greatest common divisor and least common multiple;
- for a and $b \neq 0$ the division algorithm gives us

$$
a=q b+r, \quad \text { where }|r|<|b| .
$$

- the Euclidean algorithm uses the divison algorithm to find GCDs.

These need not hold in integrals domains! We would like to understand this better.

Divisibility

Definition

If $a, b \in R$, then a divides b, or b is a multiple of a if $b=a c$ for some $c \in R$. Write $a \mid b$. If $a \mid b$ and $b \mid a$, then a and b are associates, written $a \sim b$.

Examples

- In $\mathbb{Z}: n$ and $-n$ are associates.
- In $\mathbb{R}[x]: f(x)$ and $c \cdot f(x)$ are associates for any $c \neq 0$.

This defines an equivalence relation on R^{*}, and partitions it into equivalence classes.

- The unique maximal class is $\{0\}$ (because $r \mid 0, \forall r \in R$).
- The unique minimal class is $U(R)$ (because $u \mid r, \forall u \in U(R), r \in R$).

■ Elements in the minimal classes of $R-U(R)$ are called irreducible.

Exercise

The following are equivalent for $a, b \in R$:
(i) $a \sim b$,
(ii) $a=b u$ for some $u \in U(R)$,
(iii) $(a)=(b)$.

Divisibility via ideals

Remark

For nonzero $a, b \in R$,

$$
a \mid b \quad \Leftrightarrow \quad(b) \subseteq(a)
$$

Key idea

Questions about divisibility are cleaner when translated into the language of ideals.

Divisibility is well-behaved in rings where every ideal is generated by a single element.

Divisibility via ideals

Remark

Divisors and multiples of $a \in R$ are easily identified in the ideal lattice:

1. (nonzero) multiples are "above" (a),
2. divisors are "below" (a).

The GCD and LCM have nice interpretations in the divisor and ideal lattices.

Key idea

Everything behaves nicely if all ideals have the form $I=(a)$, for some $a \in R$.

Divisibility, factorization, and principal ideals

Definition

An ideal generated by a single element $a \in R$, denoted $I=(a)$, is called a principal ideal.
If non-principal ideals lurk, we can lose nice properties like unique factorization.
Consider the following examples in $\mathbb{Z}[\sqrt{-5}]$:

$$
29=(3-2 \sqrt{-5})(3+2 \sqrt{-5}), \quad 3 \cdot 3=9=(2-\sqrt{-5})(2+\sqrt{-5}) .
$$

- The element 29 is reducible, whereas 3 is irreducible.
- Neither of the ideals (3) and (29) are prime in $\mathbb{Z}[\sqrt{-5}]$.

Principal ideal domains

Definition

If every ideal of R is principal, then R is a principal ideal domain (PID).

Divisibility via ideals: a summary

Let R be an integral domain.

1. u is a unit iff $(u)=R$,
2. $a \mid b$ iff $(b) \subseteq(a)$,
3. a and b are associates iff $(a)=(b)$.
4. a is irreducible iff there is no $(b) \supsetneq(a)$, i.e., if (a) is a maximal principal ideal.

The following are all PIDs (stated without proof):

- the integers \mathbb{Z},
- any field F,
- the ring $F[x]$.

The ring $R=\mathbb{Z}[x]$ is not a PID: x is irreducible but $(x) \subsetneq(x, 2) \subsetneq R$.

Key idea

Divisibility and factorization are well-behaved in PIDs.

Prime ideals, prime elements, and irreducibles

Euclid's lemma (300 B.C.)

If a prime p divides $a b$, then it must divide a or b.

In the language of ideals:

$$
\text { If }(a \text { non-unit) } p \text { is prime, then }(a b) \subseteq(p) \text { implies either }(a) \subseteq(p) \text { or }(b) \subseteq(p)
$$

Definition

An element $p \in R$ is prime if it is not a unit, and one of the equivalent conditions holds:

- $p \mid a b$ implies $p \mid a$ or $p \mid b$
- $(a b) \subseteq(p)$ implies $(a) \subseteq(p)$ or $(b) \subseteq(p)$.

Compare this to what it means for p to be irreducible: $a \mid p \Rightarrow a \sim p(a \notin U(R))$.
These concepts coincide in PIDs (like \mathbb{Z}), but not in all integral domains.

Irreducibles and primes

Recall that a nonzero $p \notin U(R)$ is:
■ irreducible if $\underbrace{p=a b}_{(a b)=(p)} \Rightarrow \underbrace{b \in U(R)}_{(a)=(p)}$ or $\underbrace{a \in U(R)}_{(b)=(p)}$.

- prime if $\underbrace{p \mid a b}_{(a b) \subseteq(p)} \Rightarrow \underbrace{p \mid a}_{(a) \subseteq(p)}$ or $\underbrace{p \mid b}_{(b) \subseteq(p)}$.

Proposition

In an integral domain R, if $p \neq 0$ is prime, then p is irreducible.

Proof (elementwise)

Suppose p is prime, but (for sake of contradiction) reducible. Then $p=a b ; a, b \notin U(R)$.
Then (wlog) $p \mid a$, so $a=p c$ for some $c \in R$. Now,

$$
p=a b=(p c) b=p(c b) .
$$

This means that $c b=1$, and thus $b \in U(R)$. Therefore, p is prime.

Irreducibles and primes

Recall that a nonzero $p \notin U(R)$ is:
■ irreducible if $\underbrace{p=a b}_{(a b)=(p)} \Rightarrow \underbrace{b \in U(R)}_{(a)=(p)}$ or $\underbrace{a \in U(R)}_{(b)=(p)}$.

- prime if $\underbrace{p \mid a b}_{(a b) \subseteq(p)} \Rightarrow \underbrace{p \mid a}_{(a) \subseteq(p)}$ or $\underbrace{p \mid b}_{(b) \subseteq(p)}$.

Proposition

In an integral domain R, if $p \neq 0$ is prime, then p is irreducible.

Proof (idealwise; contrapositive)
If p is reducible, $\underbrace{(p)=(a b)}_{p=a b}$ for $(p) \subsetneq(a)$ and $(p) \subsetneq(b)$.
Then, we have $\underbrace{(a b) \subseteq(p)}_{p \mid a b}$ but $\underbrace{(a) \nsubseteq(p)}_{p \nmid a}$ and $\underbrace{(b) \nsubseteq(p)}_{p \nmid b}$.
Therefore, p is not prime.

$$
\begin{align*}
& (\mathrm{a}) \tag{a}\\
& (a) \nsubseteq(p) \text { and } \\
& (b) \nsubseteq(p)
\end{align*}
$$

Prime ideals in a PID

Proposition

In a PID, every irreducible is prime.

Proof

m is irreducible	$\Longleftrightarrow(m)$ is a max'l principal ideal		always
	$\Longleftrightarrow(m)$ is maximal		in a PID
	$\Longleftrightarrow(m)$ is prime		always
	\Longleftrightarrow	m is prime	

Corollary

In a PID, every nonzero prime ideal is maximal.

Proof

In any intergral domain, (nonzero) prime \Rightarrow irreducible.

For $m \neq 0$ in a general integral domain:
(m) is maximal $\Longrightarrow \quad(m)$ is prime $\Longleftrightarrow m$ is prime
$\Longrightarrow \quad m$ is irreducible $\Longleftrightarrow(m)$ is max' $\quad \Longleftrightarrow$ principal

Non-prime irreducibles, and non-unique factorization

Caveat: Irreducible \nRightarrow prime

In the ring $\mathbb{Z}[\sqrt{-5}]:=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}$,

$$
2 \mid(1+\sqrt{-5})(1-\sqrt{-5})=6=2 \cdot 3, \quad \text { but } \quad 2 \nmid(1 \pm \sqrt{-5}) .
$$

Thus, 2 (and 3) are irreducible but not prime.

When irreducibles fail to be prime, we can lose nice properties like unique factorization.
Things can get really bad: not even the factorization lengths need be the same!
For example:

- $30=2 \cdot 3 \cdot 5=-\sqrt{-30} \cdot \sqrt{-30} \in \mathbb{Z}[\sqrt{-30}]$,

■ $81=3 \cdot 3 \cdot 3 \cdot 3=(5+2 \sqrt{-14})(5-2 \sqrt{-14}) \in \mathbb{Z}[\sqrt{-14}]$.
For another example, in the ring $R=\mathbb{Z}\left[x^{2}, x^{3}\right]=\left\{a_{0}+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x_{n} \mid a_{i} \in \mathbb{Z}\right\}$,

$$
x^{6}=x^{2} \cdot x^{2} \cdot x^{2}=x^{3} \cdot x^{3}
$$

The element $x^{2} \in R$ is not prime because $x^{2} \mid x^{3} \cdot x^{3}$ yet $x^{2} \nmid x^{3}$ in R.

Greatest common divisors \& least common multiples

Proposition

If $I \subseteq \mathbb{Z}$ is an ideal, and $a \in I$ is its smallest positive element, then $I=(a)$.

Proof

Pick any positive $b \in I$. Write $b=a q+r$, for $q, r \in \mathbb{Z}$ and $0 \leq r<a$.
Then $r=b-a q \in I$, so $r=0$. Therefore, $b=q a \in(a)$.

Definition

Given $a, b \in R$ in an integral domain,

- $d \in R$ is a common divisor if $d \mid a$ and $d \mid b$.
- d is a greatest common divisor (GCD) if $c \mid d$ for every common divisor c.
- $m \in R$ is a common multiple if $a \mid m$ and $b \mid m$.

■ $m \in R$ is a least common multiple (LCM) if $m \mid n$ for every common multiple n.

Greatest common divisors \& least common multiples

The GCD and LCM have nice interpretations in the divisor and ideal lattices.

This is how we'll prove their existence and uniqueness in a PID.
Note that $a b$ is a common multiple of a and b, so $(a b) \subseteq(a) \cap(b)$.

Nice properties of PIDs

Proposition

If R is a PID, then any $a, b \in R^{*}$ have a GCD, $d=\operatorname{gcd}(a, b)$.
It is unique up to associates, and can be written as $d=x a+y b$ for some $x, y \in R$.

Proof

Existence. The ideal generated by a and b is

$$
I=(a, b)=\{u a+v b \mid u, v \in R\} .
$$

Since R is a PID, we can write $I=(d)$ for some $d \in I$, and so $d=x a+y b$.
Since $a, b \in(d)$, both $d \mid a$ and $d \mid b$ hold.
If c is a divisor of $a \& b$, then $c \mid x a+y b=d$, so d is a GCD for a and b. \checkmark

Uniqueness. If d^{\prime} is another GCD, then $d \mid d^{\prime}$ and $d^{\prime} \mid d$, so $d \sim d^{\prime}$. \checkmark

The second statement above is called Bézout's identity.

Noetherian rings (weaker than being a PID)

A ring is Noetherian if it satisfies any of the three equivalent conditions.

Proposition

Let R be a ring. The following are equivalent:
(i) Every ideal of R is finitely generated.
(ii) Every ascending chain of ideals stabilizes. ("ascending chain condition")
(iii) Every nonempty family of ideals has a maximal element. ("maximal condition")

Proof (sketch)

$(1 \Rightarrow 2)$: Let $I_{1} \subseteq I_{2} \subseteq \cdots$ be an ascending chain with $I=\bigcup_{j=1}^{\infty} I_{j}=\left(a_{1}, \ldots, a_{n}\right)$.
$(2 \Rightarrow 3)$: Let S be a nonempty family of ideals.
Take $I_{1} \in S$. If it isn't maximal, take some $I_{2} \supseteq I_{1}$ in S. Repeat; this process must stop.
$(3 \Rightarrow 1)$: Given I, let $S=\{$ f.g. $J \unlhd I\}$, with max'I element $M \subseteq I$. Suppose $a \in I-M$.
Then $M \subsetneq(M, a) \subseteq 1 \Rightarrow(M, a)=1$.

We can define left-Noetherian and right-Noetherian rings analogously.

Unique factorization domains

Definition

An integral domain is a unique factorization domain (UFD) if:
(i) It is atomic: every nonzero nonunit is a product of irreducibles;
(ii) Every irreducible is prime.

Examples

1. \mathbb{Z} is a UFD: Every $n \in \mathbb{Z}$ can be uniquely factored as a product of irreducibles (primes):

$$
n=p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{k}^{d_{k}}
$$

This is the fundamental theorem of arithmetic.
2. The ring $\mathbb{Z}[x]$ is a UFD, because every polynomial can be factored into irreducibles. It is not a PID because the following ideal is not principal:

$$
(2, x)=\{f(x) \mid \text { the constant term is even }\} .
$$

3. The ring $\mathbb{Q}\left[x, x^{1 / 2}, x^{1 / 4}, \ldots\right]$ has no irreducibles.
4. The ring $\mathbb{Z}[\sqrt{-5}]$ is not a UFD because $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$.
5. We've shown that (ii) holds for PIDs. Next, we will see that (i) holds as well.

Unique factorization domains

Theorem

If R is a PID, then R is a UFD.

Proof

We need to show Condition (i) holds: every element is a product of irreducibles.
We'll show that if this fails, we can construct

$$
I_{1} \subsetneq I_{2} \subsetneq I_{3} \subsetneq \cdots,
$$

which is impossible in a PID. (They are Noetherian.)
Define

$$
X=\left\{a \in R^{*} \backslash U(R) \mid \text { a can't be written as a product of irreducibles }\right\} .
$$

If $X \neq \emptyset$, then pick $a_{1} \in X$. Factor this as $a_{1}=a_{2} b$, where $a_{2} \in X$ and $b \notin U(R)$. Then $\left(a_{1}\right) \subsetneq\left(a_{2}\right) \subsetneq R$, and repeat this process. We get an ascending chain

$$
\left(a_{1}\right) \subsetneq\left(a_{2}\right) \subsetneq\left(a_{3}\right) \subsetneq \cdots
$$

that does not stabilize. Since this is impossible in a PID, $X=\emptyset$.

Maximal ideals of $\mathbb{Z}[x]$

Let $M \unlhd \mathbb{Z}[x]$ be a maximal ideal.
The intersection $M \cap \mathbb{Z}=(n)$, and by the diamond theorem, $\underbrace{\mathbb{Z}[x] / M}_{\text {field }} \cong \underbrace{\mathbb{Z} /(n)}_{\text {field }}$, so $n=p$.
Reducing mod p gives a PID, $\mathbb{Z}[x] /(p) \cong \mathbb{Z}_{p}[x]$, and so $M /(p)=(\bar{m}(x))$ is principal.

The original ideal in $\mathbb{Z}[x]$ must have the form

$$
M=\left(m(x), p \cdot f_{1}(x), \ldots, p \cdot f_{m}(x)\right)=(p, m(x)),
$$

where $m(x)$ modulo p is irreducible in $\mathbb{Z}_{p}[x]$.

Maximal ideals of $\mathbb{Z}[x]$

Proposition

There is a biijection between:

- maximal ideals of $\mathbb{Z}_{p}[x]$, and
- polynomials $m(x) \in \mathbb{Z}[x]$ that remain irreducible modulo p.

(0)

Summary of ring types

The Euclidean algorithm

Around 300 B.C., Euclid wrote his famous book, the Elements, in which he described what is now known as the Euclidean algorithm:

Proposition VII. 2 (Euclid's Elements)

Given two numbers not prime to one another, to find their greatest common measure.

The algorithm works due to two key observations:
■ If $a \mid b$, then $\operatorname{gcd}(a, b)=a$;
■ If $a=b q+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
This is best seen by an example: Let $a=654$ and $b=360$.

$$
\begin{array}{ll}
654=360 \cdot 1+294 & \operatorname{gcd}(654,360)=\operatorname{gcd}(360,294) \\
360=294 \cdot 1+66 & \operatorname{gcd}(360,294)=\operatorname{gcd}(294,66) \\
294=66 \cdot 4+30 & \operatorname{gcd}(294,66)=\operatorname{gcd}(66,30) \\
66=30 \cdot 2+6 & \operatorname{gcd}(66,30)=\operatorname{gcd}(30,6) \\
30=6 \cdot 5 & \operatorname{gcd}(30,6)=6 .
\end{array}
$$

We conclude that $\operatorname{gcd}(654,360)=6$.

The Euclidean algorithm in terms of ideals
Let's see that example again: Let $a=654$ and $b=360$.

$$
\begin{array}{ll}
654=360 \cdot 1+294 & \operatorname{gcd}(654,360)=\operatorname{gcd}(360,294) \\
360=294 \cdot 1+66 & \operatorname{gcd}(360,294)=\operatorname{gcd}(294,66) \\
294=66 \cdot 4+30 & \operatorname{gcd}(294,66)=\operatorname{gcd}(66,30) \\
66=30 \cdot 2+6 & \operatorname{gcd}(66,30)=\operatorname{gcd}(30,6) \\
30=6 \cdot 5 & \operatorname{gcd}(30,6)=6 .
\end{array}
$$

We conclude that $\operatorname{gcd}(654,360)=6$.

$$
(\operatorname{gcd}(a, b))=(d)=(\operatorname{gcd}(b, r)) \quad(\operatorname{gcd}(654,360))=(6)
$$

(a)

(654)

Euclidean domains

Loosely speaking, a Euclidean domain is a ring for which the Euclidean algorithm works.

Definition

An integral domain R is Euclidean if it has a degree function $d: R^{*} \rightarrow \mathbb{Z}$ satisfying:
(i) non-negativity: $d(r) \geq 0 \quad \forall r \in R^{*}$.
(ii) monotonicity: if $a \mid b$, then $d(a) \leq d(b)$,
(iii) division-with-remainder property: For all $a, b \in R, b \neq 0$, there are $q, r \in R$ such that

$$
a=b q+r \quad \text { with } \quad r=0 \quad \text { or } \quad d(r)<d(b) .
$$

Note that Property (ii) could be restated to say: $d(a) \leq d(a b)$ for all $a, b \in R^{*}$.
Since 1 divides every $x \in R$,

$$
d(1) \leq d(x), \quad \text { for all } x \in R
$$

Similarly, if x divides 1 , then $d(x) \leq d(1)$. Elements that divide 1 are the units of R.

Proposition

If u is a unit, then $d(u)=d(1)$.

The division algorithm in $R=\mathbb{Z}$

The integers are a Euclidean domain with degree function

$$
d: \mathbb{Z}^{*} \longrightarrow \mathbb{Z}, \quad d(n)=|n| .
$$

The division algorithm takes $a, b \in R, b \neq 0$, and finds $q, r \in R$ such that

$$
a=b q+r \quad \text { with } \quad r=0 \quad \text { or } \quad d(r)<d(b) .
$$

Note that q and r are not unique!
There are two possibilities for q and r when dividing $b=5$ into $a=23$:

$$
23=4 \cdot 5+3, \quad 23=5 \cdot 5+(-2)
$$

Euclidean domains

Examples

- $R=\mathbb{Z}$ is Euclidean, with $d(r)=|r|$.
- $R=F[x]$ is Euclidean if F is a field. Define $d(f(x))=\operatorname{deg} f(x)$.
- The Gaussian integers

$$
\mathbb{Z}[\sqrt{-1}]=\{a+b i \mid a, b \in \mathbb{Z}\}
$$

is Euclidean with degree function $d(a+b i)=a^{2}+b^{2}$.

Proposition

If R is Euclidean, then $U(R)=\left\{x \in R^{*} \mid d(x)=d(1)\right\}$.

Proof

We've already established " \subseteq ". For " \supseteq ", Suppose $x \in R^{*}$ and $d(x)=d(1)$.
Write $1=q x+r$ for some $q \in R$, and $r=0$ or $d(r)<d(x)=d(1)$.
But $d(r)<d(1)$ is impossible, and so $r=0$, which means $q x=1$ and hence $x \in U(R)$.

The division algorithm in the Gaussian integers

Failure of the division algorithm in $R_{-5}=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}$

The Euclidean algorithm in terms of principal ideals and lattices

- $\operatorname{gcd}(6+3 i, 1+2 i)=1$ in $\mathbb{Z}[i]:(1)$ is the min'l princ. ideal containing $(6+3 i) \&(1+2 i)$.
- $\operatorname{gcd}(5,2+\sqrt{-5})=1$ in $\mathbb{Z}[\sqrt{-5}]:(1)$ is the min'I princ. ideal containing $(5) \&(2+\sqrt{-5})$.
$N(x)=1$
(1) $=\mathbb{Z}[i]$
(1) $=\mathbb{Z}[\sqrt{-5}]$
$N(x)=1$

$$
\underbrace{6+3 i}_{=a}=(\underbrace{1+2 i}_{=b})(2-i) \underbrace{+2}_{=r}
$$

(5)
25

$$
5 \neq(2+\sqrt{-5}) q+r, \quad N(r)<N(b)=9
$$

Note that there are only four principal ideals of $\mathbb{Z}[\sqrt{-5}]$ of norm less than $N(2+\sqrt{-5})=9$!

Euclidean domains and PIDs

Proposition

Every Euclidean domain is a PID.

Proof

Let $I \neq 0$ be an ideal of R and pick some $b \in I$ with $d(b)$ minimal.
Pick $a \in I$, and write

$$
a=b q+r, \quad \text { where } r=0 \text { or } \underbrace{0<d(r)<d(b)}_{\text {impossible by minimality }} .
$$

Therefore, $r=0$, which means $a=b q \in(b)$.
Since a was arbitrary, $I=(b)$.

Therefore, non-PIDs like the following cannot be Euclidean:
(i) $\mathbb{Z}[\sqrt{-5}]$,
(ii) $\mathbb{Z}[x]$,
(iii) $F[x, y]$.

Quadradic fields

The quadratic field for a square-free $m \in \mathbb{Z}$ is

$$
\mathbb{Q}(\sqrt{m})=\{a+b \sqrt{m} \mid a, b \in \mathbb{Q}\} .
$$

Proposition (exercise)

In $\mathbb{Q}[x]$, since $x^{2}-m$ is irreducible, it generates a maximal ideal, and there's an isomorphism

$$
\mathbb{Q}[x] /\left(x^{2}-m\right) \longrightarrow \mathbb{Q}(\sqrt{m}), \quad f(x)+I \longmapsto f(\sqrt{m})
$$

Definition

The field norm of $\mathbb{Q}(\sqrt{m})$ is

$$
N: \mathbb{Q}(\sqrt{m}) \longrightarrow \mathbb{Q}, \quad N(a+b \sqrt{m})=(a+b \sqrt{m})(a-b \sqrt{m})=a^{2}-m b^{2}
$$

Remarks (exercises)

- The field norm is multiplicative: $N(x y)=N(x) N(y)$.
- If $m<0$ and $z=a+b \sqrt{m} \in \mathbb{C}$, then $N(a+b \sqrt{m})=z \bar{z}=|z|^{2}$.
- If $m>0$, then $N(x)$ isn't a classic "norm" - it can take negative values.

Norms of elements in $\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{Q}(\sqrt{-5})$

Quadradic integers

Every number in $\mathbb{Z}[\sqrt{m}]$ is a root of a monic degree-2 polynomial:

$$
a+b \sqrt{m} \quad \text { is a root of } \quad f(x)=x^{2}-2 a x+\left(a^{2}-b^{2} m\right) \in \mathbb{Z}[x] .
$$

If $m \equiv 1 \bmod 4$, then

$$
\mathbb{Z}\left[\frac{1+\sqrt{m}}{2}\right]=\left\{\left.a+b \frac{1+\sqrt{m}}{2} \right\rvert\, a, b \in \mathbb{Z}\right\}=\left\{\left.\frac{c}{2}+\frac{d \sqrt{m}}{2} \right\rvert\, c \equiv d \quad(\bmod 2)\right\}
$$

also contains roots of monic polynomials:

$$
\frac{a+b \sqrt{m}}{2} \quad \text { is a root of } \quad f(x)=x^{2}-a x+\frac{a^{2}-b^{2} m}{4} \in \mathbb{Z}[x] .
$$

Definition

For a square-free $m \in \mathbb{Z}$, the ring R_{m} of quadratic integers is the subring of $\mathbb{Q}(\sqrt{m})$ consisting of roots of monic quadratic polynomials in $\mathbb{Z}[x]$:

$$
R_{m}= \begin{cases}\mathbb{Z}[\sqrt{m}] & m \equiv 2 \text { or } 3 \quad(\bmod 4) \\ \mathbb{Z}\left[\frac{1+\sqrt{m}}{2}\right] & m \equiv 1 \quad(\bmod 4)\end{cases}
$$

These are subrings of the algebraic integers, the roots of polynomials, and the algebraic numbers, the roots of all polynomials in $\mathbb{Z}[x]$.

Examples: $R_{-2}=\mathbb{Z}[\sqrt{-2}]$ and $R_{-7}=\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right] \subseteq \mathbb{C}$

Primes in the Gaussian integers: $R_{-1}=\{a+b \sqrt{-1} \mid a, b \in \mathbb{Z}\}$

Primes in the Eisenstein integers: $R_{-3}=\{a+\omega b \mid a, b \in \mathbb{Z}\}, \omega=\frac{1+\sqrt{-3}}{2}$

Primes in $R_{-5}=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}$
Units are white, primes are black, non-prime irreducibles are blue, red and purple.

Units, primes, and irreducibles in algebraic integer rings

The field norm of $z \in R_{m}$ is an integer, even in $\mathbb{Z}\left[\frac{1+\sqrt{m}}{2}\right]$:

$$
N\left(a+b \frac{1+\sqrt{m}}{2}\right)=a^{2}+a b+\frac{1-m}{4} b^{2} \in \mathbb{Z}, \quad \text { if } m \equiv 1 \bmod 4 .
$$

This, with $N(x y)=N(x) N(y)$, means that $u \in U\left(R_{m}\right)$ iff $N(u)= \pm 1$.

Units in R_{m}

- R_{-1} has 4 units: ± 1 and $\pm i$ (solutions to $N(a+b i)=a^{2}+b^{2}=1$).
- R_{-3} has 6 units: ± 1, and $\pm \frac{1 \pm \sqrt{-3}}{2}$ (solutions to $N(a+b \sqrt{-3})=a^{2}+3 b^{2}=1$).
- $U\left(R_{m}\right)=\{ \pm 1\}$ for all other $m<0$.
- If $m \geq 0$, then R_{m} has infinitely many units - solutions to Pell's equation:

$$
N(a+b \sqrt{m})=a^{2}-b^{2} m= \pm 1
$$

The norm is useful for determining the primes and irreducibles in R_{m}.
Non-prime irreducibles lead to multiple elements with the same norm. In R_{-5} :

$$
3 \cdot 3=9=(2+\sqrt{-5})(2-\sqrt{-5}) \quad \Rightarrow \quad N(3)=N(2+\sqrt{-5})=9 .
$$

If $N(x)$ is prime, then x is prime in R_{m}, but not conversely.

Primes in R_{m}

Consider a prime $p \in \mathbb{Z}$ but in the larger ring R_{m}. There are three possible behaviors:

- p splits if $(p)=\mathfrak{p q}$ for distinct prime ideals.
- p is inert if (p) remains prime in R_{m}.
- p is ramified if $(p)=\mathfrak{p}^{2}$, for a prime ideal \mathfrak{p}.

Here's what this looks like in the subring lattice, for the Gaussian integers.

" 3 is inert"
" 5 splits; is reducible"
" 2 is ramified; irreducible"

Notice that if a prime splits in $\mathbb{Z}[i]$, then it is reducible, and must factor.

Primes in R_{m} that aren't PIDs

Consider a prime $p \in \mathbb{Z}$ but in the larger ring R_{m}. There are three possible behaviors:

- p splits if $(p)=\mathfrak{p q}$ for distinct prime ideals.
- p is inert if (p) remains prime in R_{m}.
- p is ramified if $(p)=\mathfrak{p}^{2}$, for a prime ideal \mathfrak{p}.

Here's what this looks like in the subring lattice of $R_{-5}=\mathbb{Z}[\sqrt{-5}]$.

(29)

"11 is inert" prime
"29 splits"
reducible

"5 is ramified" reducible
"2 is ramified" irreducible

Remark

In a non-PID, a split prime p may or may not factor, but its ideal (p) will.

Primes in R_{m}

If p is split or ramified, then (p) isn't a prime ideal because it factors.
The following characterizes when and how it factors.

Proposition (HW)

Consider the ring R_{m} of quadratic integers and a odd prime $p \in \mathbb{Z}$.

- If $p \nmid m$ and m is a quadratic residue $\bmod p\left(\right.$ i.e., $\left.m \equiv n^{2}(\bmod p)\right)$, then p splits:

$$
(p)=(p, n+\sqrt{m})(p, n-\sqrt{m})
$$

- If $p \nmid m$ and m is not a quadratic residue $\bmod p$, then p is inert.
- If $p \mid m$, then p is ramified, and

$$
(p)=(p, \sqrt{m})^{2} .
$$

Remark

This extends to all primes by replacing $p \mid m$ with $p \mid \Delta$, the discriminant of $\mathbb{Q}(\sqrt{-m})$:

$$
\Delta=\left\{\begin{array}{lll}
m & m \equiv 1 & (\bmod 4) \\
4 m & m \equiv 2,3 \quad(\bmod 4)
\end{array}\right.
$$

Primes in R_{m}

The behavior of a prime $p \in \mathbb{Z}$ in R_{m} is completely characterized by quadratic residues.
The discriminant Δ of R_{m} is $\Delta=m$ (triangular) or $\Delta=4 m$ (rectangular).
A prime $p \neq 2$ in \mathbb{Z}, when passed to R_{m}, becomes:

- ramified iff $\Delta \equiv 0(\bmod p)$.
- split iff $\Delta \equiv a^{2}(\bmod p)$, for some $a \not \equiv 0$,
- inert iff $\Delta \not \equiv a^{2}(\bmod p)$, for all a.

The prime $p=2$ in \mathbb{Z}, when passed to R_{m}, becomes:

- ramified iff $\Delta \equiv 0,4(\bmod 8)$.
- split iff $\Delta \equiv 1(\bmod 8)$.
- inert iff $\Delta \not \equiv 5(\bmod 8)$.

Remark

- If R_{m} is a PID and p splits, then it is reducible.
- If R_{m} is not a PID and p splits, then
- p might be reducible, or
- p could be a non-prime irreducible.

Primes in $R_{-5}=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}$
Units are white, primes are black, non-prime irreducibles are blue, red and purple.

The ideal class group

The degree to which unique factorization fails in R is measured by the class group, $\mathrm{Cl}(R)$.

Formally, two ideals I and J are equivalent if $\alpha I=\beta J$ for some $\alpha, \beta \in R$.
The equivalence classes form a group, under $[/] \cdot[J]:=[/ J]$.
The identity element is the class of principal ideals, [(1)].
In the example above, $\mathrm{CI}\left(R_{-5}\right)=\{[(1)],[\mathfrak{p}]\} \cong C_{2}$.

Key point

The class group is trivial iff R_{m} is a PID (equivalently, UFD).

The ideal class group

The degree to which unique factorization fails in R is measured by the class group, $\mathrm{Cl}(R)$.

The ideal class group
Unique factorization fails in $R_{-23}=\mathbb{Z}[\omega]$, for $\omega=\frac{1+\sqrt{-23}}{2}$, in a different way:

The class group is $\mathrm{Cl}\left(\mathbb{Z}\left[\frac{1+\sqrt{-23}}{2}\right]\right) \cong C_{3}$.

The ideal class group

Unique factorization fails in $R_{-14}=\mathbb{Z}[\sqrt{-14}]$ because $3^{4}=81=(5+\sqrt{-14})(5+\sqrt{-14})$.
$\mathbb{Z}[\sqrt{-14}]$
$(3,1+\sqrt{-14})$
$(3,1-\sqrt{-14})$
(3)
(9) $(27,5-2 \sqrt{-14})$
$(5+2 \sqrt{-14})$
$(27,5+2 \sqrt{-14})$

	$[(1)]$	$[\mathfrak{p}]$	$\left[\mathfrak{p}^{2}\right]$	$\left[\mathfrak{p}^{3}\right]$
$[(1)]$	$[(1)]$	$[\mathfrak{p}]$	$\left[\mathfrak{p}^{2}\right]$	$\left[\mathfrak{p}^{3}\right]$
$[\mathfrak{p}]$	$[\mathfrak{p}]$	$\left[\mathfrak{p}^{2}\right]$	$\left[\mathfrak{p}^{3}\right]$	$[(1)]$
$\left[\mathfrak{p}^{2}\right]$	$\left[\mathfrak{p}^{2}\right]$	$\left[\mathfrak{p}^{3}\right]$	$[(1)]$	$[\mathfrak{p}]$
$\left[\mathfrak{p}^{3}\right]$	$\left[\mathfrak{p}^{3}\right]$	$[(1)]$	$[\mathfrak{p}]$	$\left[\mathfrak{p}^{2}\right]$

$\mathfrak{p}^{4} \overline{\mathfrak{p}}^{4}$

The class group is $\mathrm{Cl}(\mathbb{Z}[\sqrt{-14}]) \cong C_{4}$.

The ideal class group
Unique factorization fails in $R_{-30}=\mathbb{Z}[\sqrt{-30}]$ because $2 \cdot 3 \cdot 5=30=-(\sqrt{-30})^{2}$.

The class group is $\mathrm{Cl}(\mathbb{Z}[\sqrt{-23}]) \cong V_{4}$.

The ideal class group

Theorem

For squarefree $m<0$, the class group $\mathrm{Cl}\left(R_{m}\right)$ is trivial if and only if

$$
m \in\{-1,-2,-3,-7,-11,-19,-43,-67,-163\}
$$

Conjecture (Cohen/Lenstra, 1984)

There are infinitely many $m>0$ for which $\mathrm{CI}\left(R_{m}\right)$ is trivial.

Here is the list of squarefree $m>0$ for which the class group of R_{m} is trivial:
$2,3,5,6,7,11,13,14,17,19,21,22,23,29,31,33,37,38,41,43,46,47,53,57,59,61,62,67,69,71,73,77,83$, $86,89,93,94,97,101,103,107,109,113,118,127,129,131,133,134,137,139,141,149,151,157,158,161,163$, $166,167,173,177,179,181,191,193,197,199,201,206,209,211,213,214,217,227,233,237,239,241,249$, $251,253,262,263,269,271,277,278,281,283,293,301,302,307,309,311,313,317,329,331,334,337,341$, $347,349,353,358,367,373,379,381,382,383,389,393,397,398,409,413,417,419,421,422,431,433,437$, $446,449,453,454,457,461,463,467,478,479,487,489,491,497,501,502,503,509,517,521,523,526,537$, $541,542,547,553,557,563,566,569,571,573,581,587,589,593,597,599,601,607,613,614,617,619,622$, $631,633,641,643,647,649,653,661,662,669,673,677,681,683,691,694,701,709,713,717,718,719,721$, $734,737,739,743,749,751,753,757,758,766,769,773,781,787,789,797,809,811,813,821,823,827,829$, $838,849,853,857,859,862,863,869,877,878,881,883,886,887,889,893,907,911,913,917,919,921,926$, 929, 933, 937, 941, 947, 953, 958, 967, 971, 973, 974, 977, 983, 989, 991, 997, 998.

Quadratic integers and norm-Euclidean domains

Proposition

If $m=-2,-1,2,3$, then R_{m} is Euclidean with $d(x)=|N(x)|$; ("norm-Euclidean").

Proof

Take $a, b \in R_{m}=\mathbb{Z}[\sqrt{m}]$, with $b \neq 0$. Let $a / b=s+t \sqrt{m} \in \mathbb{Q}(\sqrt{m})$.
Pick $q=c+d \sqrt{m} \in R_{m}$, the nearest element to a / b.
Since $N(b)=N(r) N(b / r)$, we have

$$
|N(r)|<|N(b)| \quad \Leftrightarrow \quad|N(r / b)|<|N(1)|
$$

For each $m=-2,-1,2,3$:

$$
-1<N\left(\frac{r}{b}\right)=\underbrace{(c-s)^{2}}_{\leq \frac{1}{4}}-m \underbrace{(d-t)^{2}}_{\leq \frac{1}{4}}<1 .
$$

Proposition (HW)

If $m=-3,-7,-11$, then $R_{m}=\mathbb{Z}\left[\frac{1+\sqrt{m}}{2}\right]$ is norm-Euclidean.

Quadratic integers and norm-Euclidean domains

Alternate characterization

For $m<0$, the ring R_{m} is norm-Euclidean iff the unit balls centered at points in R_{m} cover the complex plane.

$$
R_{-5}=\mathbb{Z}[\sqrt{-5}]
$$

$$
R_{-15}=\mathbb{Z}\left[\frac{1+\sqrt{-15}}{2}\right]
$$

If $a / b \in \mathbb{Q}(\sqrt{m})$ (see previous proof) lies in the yellow region, then $N(r / b)>1$.

Quadratic integers and norm-Euclidean domains

Alternate characterization

For $m<0$, the ring R_{m} is norm-Euclidean iff the unit balls centered at points in R_{m} cover the complex plane.

Euclidean, PID

non-Euclidean, non-PID

Quadratic integers and norm-Euclidean domains

Alternate characterization

For $m<0$, the ring R_{m} is norm-Euclidean iff the unit balls centered at points in R_{m} cover the complex plane.

$$
R_{-11}=\mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]
$$

Euclidean, PID

non-Euclidean, PID

PIDs that are not Euclidean

Theorem

The ring R_{m} is norm-Euclidean iff

$$
m \in\{-11,-7,-3,-2,-1,2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73\} .
$$

Theorem (D.A. Clark, 1994)

The rings R_{69} and R_{14} are Euclidean domains that are not norm-Euclidean.

The following degree function works for R_{69}, defined on the primes

$$
d(p)=\left\{\begin{array}{cc}
|N(p)| & \text { if } p \neq 10+3 \alpha \\
c & \text { if } p=10+3 \alpha
\end{array} \quad \alpha=\frac{1+\sqrt{69}}{2}, \quad c>25\right. \text { an integer. }
$$

Theorem

If $m<0$, then R_{m} is Euclidean iff $m \in\{-11,-7,-3,-2,-1\}$.

Theorem

If $m<0$, then R_{m} is a PID iff $m \in\{\underbrace{-163,-67,-43,-19}_{\text {non-Euclidean }}, \underbrace{-11,-7,-3,-2,-1}_{\text {Euclidean }}\}$.

Quotients of the Gaussian integers

Since $\mathbb{Z}[i]$ is PID, every quotient ring has the form $\mathbb{Z}[i] /\left(z_{0}\right)$, for some $z_{0} \in \mathbb{Z}[i]$.
This ring is finite, and there are several canonical ways to describe the residue classes.
Here are two ways to visualize $\mathbb{Z}[i] /(3)$.

Since 3 is prime in $\mathbb{Z}[i]$, the ideal (3) is maximal, so $\mathbb{Z}[i] /(3) \cong \mathbb{F}_{9}$.

Quotients of the Gaussian integers

Since $3+i=(1+2 i)(1-i)$, the quotient $\mathbb{Z}[i] /(3+i)$ is not a field; it has order 10 .
The element $3+2 i$ is irreducible $(N(3+2 i)=13$ is prime $)$, so $\mathbb{Z}[i] /(3+2 i)$ is a field.

$\mathbb{Z}[i] /(3+i) \cong \mathbb{Z}_{10}$

$\mathbb{Z}[i] /(3+2 i) \cong \mathbb{Z}_{13}$

Algebraic integers (roots of monic polynomials)

Figure: Algebraic numbers in \mathbb{C}. Colors indicate the coefficient of the leading term: red $=1$ (algebraic integer), green $=2$, blue $=3$, yellow $=4$. Large dots mean fewer terms and smaller coefficients. Image from Wikipedia (made by Stephen J. Brooks).

Algebraic integers (roots of monic polynomials)

i

Figure: Algebraic integers in \mathbb{C}. Each red dot is the root of a monic polynomial of degree ≤ 7 with coefficients from $\{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$. From Wikipedia.

Summary of ring types

A problem from Master Sun's mathematical manual (3rd century A.D.)

Problem 26, Volume 3 from the Sunzi Suanjing:
"There are certain things whose number is unknown. A number is repeatedly divided by 3 , the remainder is 2 ; divided by 5 , the remainder is 3 ; and by 7 , the remainder is 2 . What will the number be?"

This is describing solution(s) to

$$
x \equiv 2(\bmod 3) \equiv 3(\bmod 5) \equiv 2(\bmod 7)
$$

This problem was also studied by Aryabhata (476-550 A.D.), Brahmagupta (598-668 A.D.), Ibn al-Haytham (965-1040 A.D.), and Fibonacci (1170-1250 A.D.).

During the Song dynasty, Qin Jiushau (1202-1261) published this in his famous Shùshū Jiǔzhāng: "A Mathematical Treatise in Nine Sections."

It appears today in algorithms for RSA cryptography and the FFT.

The Sunzi remainder theorem in \mathbb{Z}

A solution to $x \equiv 2(\bmod 3) \equiv 3(\bmod 5) \equiv 2(\bmod 7)$ satisfies

$$
x \in(2+3 \mathbb{Z}) \cap(3+5 \mathbb{Z}) \cap(2+7 \mathbb{Z}) .
$$

Every solution has the form $23+105 k$, i.e., elements of the coset $23+105 \mathbb{Z}$.
Formally, there is a ring isomorphism
$\mathbb{Z} / 105 \mathbb{Z} \longrightarrow \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 7 \mathbb{Z}, \quad x \bmod 105 \longmapsto(x \bmod 3, x \bmod 5, x \bmod 7)$.

Sunzi remainder theorem in \mathbb{Z}

Let n_{1}, \ldots, n_{k} be pairwise co-prime integers. For any $a_{1}, \ldots, a_{k} \in \mathbb{Z}$, the system

$$
\left\{\begin{array}{c}
x \equiv a_{1} \quad\left(\bmod n_{1}\right) \\
\vdots \\
x \equiv a_{k} \quad\left(\bmod n_{k}\right)
\end{array}\right.
$$

has a solution. Moreoever, any two solutions are equivalent modulo $n:=n_{1} n_{2} \cdots n_{k}$.
Equivalentally, there is an isomorphism

$$
\mathbb{Z} / n \mathbb{Z} \longrightarrow \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z}, \quad x \bmod n \longmapsto\left(x \bmod n_{1}, \ldots, x \bmod n_{k}\right)
$$

The Sunzi remainder theorem in a PID

Elements n_{1}, \ldots, n_{k} in a PID are pairwise co-prime if any of the three equivalent conditions hold, for every $i \neq j$:
(a) $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$,
(b) $a n_{i}+b n_{j}=1$, for some $a, b \in R$,
(c) $\left(n_{i}\right)+\left(n_{j}\right)=R$.

Sunzi remainder theorem for PIDs

Let $n=n_{1}, \ldots, n_{k} \in R$ be pairwise co-prime elements in a PID, with $n=n_{1} n_{2} \ldots n_{k}$. Then there is an isomorphism

$$
R /(n) \longrightarrow R /\left(n_{1}\right) \times \cdots \times R /\left(n_{k}\right), \quad x \bmod n \longmapsto\left(x \bmod n_{1}, \ldots, \times \bmod n_{k}\right)
$$

Corollary

Let $R=\mathbb{Z}$ and $\ell_{j}=\left(n_{j}\right)$, for $j=1, \ldots, k$ with $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for $i \neq j$. Then

$$
I_{1} \cap \cdots \cap I_{k}=\left(n_{1} n_{2} \cdots n_{k}\right), \quad \text { and } \quad \mathbb{Z}_{n_{1} n_{2} \cdots n_{n}} \cong \mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}
$$

The Sunzi remainder theorem in a commutative ring

In a ring R, say that $I, J \unlhd R$ are co-maximal ideals if $I+J=R$.
Equivalently, neither contain a maximal ideal. We can define co-prime analogously.
If R is commutative, then product of ideals $/$ with J is

$$
I J:=\left\{a_{1} b_{1}+\cdots+a_{m} b_{m} \mid a_{m} \in I, b_{m} \in J, m \in \mathbb{N}\right\} .
$$

This is the smallest ideal that contains all elements of the form $a b$, for $a \in I$ and $b \in J$.
It is straightforward to define this for more than two ideals.

Sunzi remainder theorem for commutative rings

Let R be a commutative ring with 1 , and I_{1}, \ldots, I_{n} pairwise co-maximal ideals with $I=I_{1} I_{2} \cdots I_{n}$. Then there is an isomorphism

$$
R / I \longrightarrow R / I_{1} \times \cdots \times R / I_{n}, \quad x+I \longmapsto\left(x+I_{1}, \ldots, x+I_{n}\right) .
$$

Do you see how to extend this to general rings?
The key is to find a suitable replacement for $I_{1} I_{2} \cdots I_{n}$.

The Sunzi remainder theorem in a general ring

Lemma

In a commutative ring R with pairwise co-maximal ideals I_{1}, \ldots, I_{n},

$$
I_{1} I_{2} \cdots I_{n}=I_{1} \cap I_{2} \cap \cdots \cap I_{n} .
$$

Proof

The " \subseteq " direction always holds. (Why?)
" $\supseteq: "$ Use induction.
Base case $(n=2)$: suppose $I+J=R$, and write $a+b=1$, for $a \in I$ and $b \in J$.
Multiply by $r \in I \cap J$ to get $r=\underbrace{r a}_{\in I J}+\underbrace{r b}_{\in I J}$.
Thus, $r=r a+r b \in I J$, hence $I \cap J \subseteq I J$.
Suppose the result holds for n ideals; we'll show it holds for $n+1$. Let

$$
I:=I_{1} I_{2} \cdots I_{n}=I_{1} \cap I_{2} \cap \cdots \cap I_{n}, \quad \text { and } \quad J=I_{n+1} .
$$

The Sunzi remainder theorem in a general ring

Lemma

In a commutative ring R with pairwise co-maximal ideals I_{1}, \ldots, I_{n},

$$
I_{1} I_{2} \cdots I_{n}=I_{1} \cap I_{2} \cap \cdots \cap I_{n} .
$$

Proof (contin.)

We need to show equailty in the following, and it suffices to show that that $I+J=R$:

$$
\underbrace{I_{1} I_{2} \cdots I_{n}}_{=I} \underbrace{I_{n+1}}_{=J} \subseteq\left(I_{1} \cap I_{2} \cap \cdots \cap I_{n}\right) \cap\left(I_{n+1}\right) .
$$

For each $j=1, \ldots n$, since $I_{j}+I_{n+1}=R$, write $1=a_{j}+b_{j}$, with $a_{j} \in I_{j}$ and $b_{j} \in I_{n+1}$.

$$
\begin{array}{ccccccccc}
1 & = & a_{1} & & & & & + & b_{1} \\
1 & = & & a_{2} & & & & \in I_{1}+I_{n+1} \\
1 & = & & & a_{3} & & & + & b_{2} \\
& & & \in I_{2}+I_{n+1} \\
& \vdots & & & & \ddots & & \vdots & \\
& & & & & \\
1 & = & & & \ddots & I_{3}+I_{n+1} \\
1 & & & & a_{n} & + & b_{n+1} & \in I_{n}+I_{n+1}
\end{array}
$$

Note that $\underbrace{a_{1} a_{2} \cdots a_{n}}_{\in I}=\left(1-b_{1}\right)\left(1-b_{2}\right) \cdots\left(1-b_{n}\right)=1+[\underbrace{\sum \text { lots of terms in } J}_{\in J}]$.

The most general version

Sunzi remainder theorem, general rings

Let R be a ring with 1 , and I_{1}, \ldots, I_{n} pairwise co-maximal ideals with $I=I_{1} \cap \cdots \cap I_{n}$. Then there is an isomorphism

$$
R / I \longrightarrow R / I_{1} \times \cdots \times R / I_{n}, \quad x+I \longmapsto\left(x+I_{1}, \ldots, x+I_{n}\right) .
$$

Proof

The following defines a ring homomorphism with $\operatorname{Ker}(\phi)=I$ (exercise):

$$
\phi: R \longrightarrow R / I_{1} \times \cdots \times R / I_{n}, \quad \phi: x \longmapsto\left(x+I_{1}, \ldots, x+I_{n}\right) .
$$

The result follows from the FHT once we show that ϕ is onto.
An element $\left(r_{1}+l, \ldots, r_{n}+l\right)$ in the co-domain has a preimage iff there is a solution to:

$$
\left\{\begin{array}{c}
x \equiv r_{1} \quad\left(\bmod I_{1}\right) \\
\vdots \\
x \equiv r_{n} \quad\left(\bmod I_{n}\right)
\end{array}\right.
$$

SRT: Establishing surjectivity

Proposition

Let I_{1}, \ldots, I_{n} be pairwise co-maximal ideals of R. For any $r_{1}, \ldots, r_{n} \in R$, the system

$$
\left\{\begin{array}{c}
x \equiv r_{1} \quad\left(\bmod I_{1}\right) \\
\vdots \\
x \equiv r_{n} \quad\left(\bmod I_{n}\right)
\end{array}\right.
$$

has a solution $r \in R$.

Proof (all we need to show)

Any element of the following form must be a solution:

$$
x=r_{1} s_{1}+\cdots+r_{n} s_{n}, \quad \text { where } s_{k} \equiv \begin{cases}1 & \left(\bmod I_{k}\right) \\ 0 & \left(\bmod I_{j}\right), j \neq k\end{cases}
$$

We'll replace $s_{k} \equiv 0\left(\bmod l_{j}\right), \forall j \neq k$ with the equivalent $s_{k} \equiv 0\left(\bmod \bigcap_{j \neq k} l_{j}\right)$.
All we have to do is construct $s_{1} \ldots, s_{n}$!
We'll show how to construct s_{1}. Then, constructing s_{2}, \ldots, s_{n} is analogous.

SRT: Establishing surjectivity

Proposition (special case of $n=2$)

Let I, J be co-maximal ideals of R. For any $r_{1}, r_{2} \in R$, the system

$$
\begin{cases}x \equiv r_{1} & (\bmod l) \\ x \equiv r_{2} & (\bmod J)\end{cases}
$$

has a solution $r \in R$.

Proof

Write $1=a+b$, with $a \in I$ and $b \in J$, and set $r=r_{2} a+r_{1} b$. This works:

$$
r-r_{1}=\left(r-r_{1} b\right)+\left(r_{1} b-r_{1}\right)=r_{2} a+r_{1}(b-1)=r_{2} a-r_{1} a=\left(r_{2}-r_{1}\right) a \in I
$$

implies that $r \equiv r_{1}(\bmod I)$, and

$$
r-r_{2}=\left(r-r_{2} a\right)+\left(r_{2} a-1\right)=r_{1} b+r_{2}(a-1)=r_{1} b-r_{2} b=\left(r_{1}-r_{2}\right) b \in J
$$

means that $r \equiv r_{2}(\bmod J)$.

SRT: Establishing surjectivity

Proposition (all that's left to show)

The ideals I_{1} and $I_{2} \cap \cdots \cap I_{n}$ are co-maximal, and thus the system

$$
\begin{cases}x \equiv 1 & \left(\bmod l_{1}\right) \\ x \equiv 0 & \left(\bmod \bigcap_{j \neq 1} l_{j}\right)\end{cases}
$$

has a solution $s_{1} \in R$.

Proof (contin.)

For each $j=2, \ldots n$, since $I_{1}+I_{j}=R$, write $1=a_{j}+b_{j}$, with $a_{j} \in I_{1}$ and $b_{j} \in I_{j}$.

$$
\begin{array}{rlllll}
1 & = & a_{2}+b_{2}+b_{3} & & & \in I_{1}+I_{2} \\
1 & = & a_{3} \\
1 & = & a_{4} \\
& & & & & \in I_{1} \\
& & & & & \\
1 & & & & \\
1 & = & I_{n}+I_{4}
\end{array}
$$

Note that $1=\left(a_{2}+b_{2}\right)\left(a_{3}+b_{3}\right) \cdots\left(a_{n}+b_{n}\right)=[\underbrace{\sum \text { terms in } I_{1}}_{\in I_{1}}]+\underbrace{b_{2} b_{3} \cdots b_{n}}_{\in I_{2} \cap I_{3} \cap \cdots \cap I_{n}}$.

An example of the Sunzi remainder theorem

Note that $(3) \subseteq \mathbb{Z}[i]$ is prime (and hence maximal), but $(5)=(1+2 i)(1-2 i)$.

$\mathbb{Z}[i] /(3) \cong \mathbb{F}_{9}$

		-			-	-		-					-	-	-	-	-	
-		-		-	-	-							-	-	-	-	-	
	-	-		-	-	-							-	-	-			-
-		-	-	-	.	-							-	-	-		-	
		-		-	-	-					-		-	-	-	-	-	-
-		-		-	-	-		-			-		-	-			-	
				-	-	-							-	-	-			
				-	-								-	-				
				-	-	-							-	-	-	-		
														-	-	-		
	-	-	-		-		-							-		-		
		-			-	-							-	-		-		
		-		-	-	-							-	-		-		
-				-	-	-							-	-	-	-		
			-	-	-	-		-					-	-	-	-		

$\mathbb{Z}[i] /(5) \cong \mathbb{Z}[i] /(1+2 i) \times \mathbb{Z}[i] /(1-2 i) \cong \mathbb{Z}_{5} \times \mathbb{Z}_{5}$

A group-theoretic analogue of the Sunzi remainder theorem

We encountered the following after proving the FHT for groups.

Theorem (HW)

Let A, B be normal subgroups satisfying $G=A B$. Then

$$
G /(A \cap B) \cong G / A \times G / B
$$

A lattice interpretation of the Sunzi remainder theorem

Let's compare to the actual Sunzi remainder theorem.

Sunzi remainder theorem (2 factors)

Let I, J be ideal of a ring R satisfying $R=I+J$. Then

$$
R /(I \cap J) \cong R / I \times R / J
$$

Idempotents

Definition

An element e in an integral domain R is an idempotent if $e^{2}=e$. An orthogonal pair of idempotents are $e_{1}, e_{2} \in R$ such that

$$
e_{1}+e_{2}=1 \quad \text { and } \quad e_{1} e_{2}=0
$$

Every idempotent $e \in R$ forms an orthogonal pair with $1-e$.
The Sunzi remainder theorem says that $R \cong R e \times R(1-e)$. Compare this to normal subgroups that are lattice complements.

If $R \cong R / I_{1} \times \cdots \times R / I_{n}$, then the elements

$$
e_{1}=(1,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 0,1)
$$

are central idempotents, and are pairwise orthogonal.

Polynomials rings

Let's continue to assume that R is an integral domain with 1 , and F a field.

Proposition (exercise)

Let $f(x), g(x) \in R[x]$ be nonzero. Then

1. $\operatorname{deg}(f(x) g(x))=\operatorname{deg} f(x)+\operatorname{deg} g(x)$.
2. $U(R[x])=U(R)$,
3. $R[x]$ is an integral domain.

Let $f(x) \in \mathbb{Z}[x]$ be irreducible. Let's explore how $f(x)$ factors over larger rings.
For example, $f(x)=x^{4}-2 \in \mathbb{Z}[x]$ factors as

- $(x-\sqrt[4]{2})(x+\sqrt[4]{2})\left(x^{2}+\sqrt{2}\right) \in \mathbb{R}[x]$
- $(x-\sqrt[4]{2})(x+\sqrt[4]{2})(x-i \sqrt[4]{2})(x+i \sqrt[4]{2}) \in \mathbb{C}[x]$.

But it remains irreducible in $\mathbb{Q}[x]$.

Key idea

Remaining inside the field of fractions will never cause an irreducible polynomial to factor.

Reduction of coefficients mod I

Let I be an ideal of a commutative ring R with 1 . The canonical quotient map

$$
R \longrightarrow \bar{R}:=R / I, \quad r \longmapsto \bar{r}:=r+1
$$

defines a homomorphism called the reduction of coefficients modulo I :

$$
\pi_{l}: R[x] \longrightarrow \bar{R}[x], \quad \pi_{l}: \sum_{i=0}^{n} a_{n} x^{n} \longmapsto \sum_{i=0}^{n} \overline{\mathrm{a}}_{n} x^{n},
$$

Proposition

For an integral domain R,
(i) $R[x] /(I) \cong(R / I)[x]$
(ii) $I \unlhd R$ is prime iff $(I) \unlhd R[x]$ is prime.

Proof

Part (i): immediate from the FHT because $\operatorname{Ker}(\phi)=(I)$.
For Part (ii):

$$
\begin{aligned}
\text { I prime } \Leftrightarrow R / I \text { an integral domain } & \Leftrightarrow(R / I)[x] \text { an integral domain } \\
& \Leftrightarrow R[x] /(I) \text { an integral domain } \\
& \Leftrightarrow(I) \text { prime. }
\end{aligned}
$$

Primitive elements and Gauss' lemma

Definition

If R is a UFD, the content of $f(x) \in R[x]$ is the GCD of its coefficients (up to associates).
If the content is 1 , then $f(x)$ is primitive.

Gauss' lemma

Let R be a UFD. If $f(x), g(x) \in R[x]$ are primitive, then so is $f(x) g(x)$.

Proof (contrapositive)

$$
\begin{aligned}
f(x) g(x) \text { not primitive } & \Longleftrightarrow \text { some } p \mid f(x) g(x) \in R[x] \\
& \Longleftrightarrow \bar{f}(x) \bar{g}(x)=\overline{0} \in R /(p)[x] \\
& \Longleftrightarrow \bar{f}(x)=\overline{0} \text { or } \bar{g}(x)=0 \\
& \Longleftrightarrow p \mid f(x) \text { or } p \mid g(x) \text { in } R[x] \\
& \Longleftrightarrow f(x) \text { not prim., or } g(x) \text { not prim. }
\end{aligned}
$$

Primitive elements

Lemma

Suppose R is a UFD with field of fractions F. Suppose $f(x)$ and $g(x)$ are primitive in $R[x]$, but associates in $F[x]$. Then they are associates in $R[x]$.

Proof

Since $f(x) \sim g(x)$ we have $f(x)=a g(x)$ for some $a \in F$. If $a=b / c$ for $a, b \in R$,

$$
f(x)=a g(x)=\frac{b}{c} g(x) \quad \Longrightarrow \quad c f(x)=b g(x) .
$$

Since $f(x)$ and $g(x)$ are primitive, the content of $c f(x)$ and $b g(x)$ is $c \sim b$. Now,

$$
b \sim c \text { in } R \quad \Longrightarrow \quad b=c u \text { for some } u \in U(R) \quad \Longrightarrow \quad a=b / c=u \in U(R) .
$$

This means that $f(x) \sim g(x)$ in $R[x]$.

Primitive elements

Proposition

Let R be a UFD and F its field of fractions. If $f(x)$ is irreducible in $R[x]$, then it is irreducible in $F[x]$.

Proof

Since $f(x)$ is irreducible in $R[x]$, it is primitive. For sake of contradiction, suppose

$$
\begin{aligned}
f(x) & =f_{1}(x) f_{2}(x) \in F[x] & & \operatorname{deg}\left(f_{i}(x)\right)>0 \\
& =a_{1} g_{1}(x) \cdot a_{2} g_{2}(x) \in F[x] & & a_{i} \in F, g_{i}(x) \text { primitive in } R[x] .
\end{aligned}
$$

We can now conclude that:
(i) $f(x) \sim g_{1}(x) g_{2}(x)$ in $F[x], \quad$ (because $a_{1} a_{2} \in F[x]$ is a unit).
(ii) $g_{1}(x) g_{2}(x)$ is primitive in $R[x]$ (by Gauss' lemma).
(iii) $f(x) \sim g_{1}(x) g_{2}(x)$ in $R[x]$, (by Lemma; $f(x) \sim g_{1}(x) g_{2}(x)$ in $F[x]$).

Therefore, $f(x)=u g_{1}(x) g_{2}(x)$ for some $u \in U(R)$, contradicting irreducibility.

Polynomials rings over a UFD

Theorem

If R is a UFD, then $R[x]$ is as well.

Proof

We need to show:
(i) Each nonzero nonunit $f(x) \in R[x]$ is a product of irreducibles. (simple induction)
(ii) Every irreducible is prime.
(ii): Suppose $f(x)$ is irreducible (and thus primitive), and $f(x) \mid g(x) h(x)$ in $R[x]$.

Since $f(x)$ remains irreducible in $F[x]$, a Euclidean domain, it is prime in $F[x]$.
WLOG, say $f(x) \mid g(x)$ in $F[x]$, with $g(x)=f(x) k(x) \in F[x]$ and $k(x) \in F[x]$. Write

$$
g(x)=a \underbrace{g_{1}(x)}_{\in R[x]}=(b / c) f(x) \underbrace{k_{1}(x)}_{\in R[x]}, \quad g_{1}(x), k_{1}(x) \text { primitive } .
$$

Now,

$$
g_{1}(x) \sim f(x) k_{1}(x) \text { in } F[x] \xrightarrow{\text { Gauss }} f(x) k_{1}(x) \text { prim. } \xrightarrow{\text { Lemma }} g_{1}(x) \sim f(x) k_{1}(x) \text { in } R[x] .
$$

Writing $g_{1}(x)=u f(x) k_{1}(x)$ for some $u \in U(R)$ shows $f(x)\left|g_{1}(x)\right| g(x) \in R[x]$.

An irreducibility test

Eisenstein's criterion

Consider a polynomial

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x]
$$

over a PID. If there is a prime $p \in R$ such that:

1. $p \mid a_{i}$ for all $i<n$
2. $p \nmid a_{n}$,
3. $p^{2} \nmid a_{0}$,
then $f(x)$ is irreducible.

Proof

Assume $f(x)$ is primitive and suppose it factors as $f(x)=g(x) h(x)$:

$$
f(x)=\left(b_{0}+b_{1} x+\cdots+b_{k} x^{k}\right)\left(c_{0}+c_{1} x+\cdots+c_{\ell} x^{\ell}\right) \in R[x], \quad k, \ell>0 .
$$

Reduce coefficients modulo $I=(p)$ to get

$$
\bar{f}(x)=\bar{a}_{n} x^{n}=\bar{b}_{k} \bar{c}_{\ell} x^{n}=\bar{g}(x) \bar{h}(x) \in \bar{R}[x] .
$$

From this we can reach a contradiction:

$$
x\left|\bar{g}(x) \bar{h}(x) \quad \Rightarrow \quad \bar{b}_{0}=\bar{c}_{0}=0 \Rightarrow p\right| b_{0} \text { and } p\left|c_{0} \Rightarrow p^{2}\right| b_{0} c_{0}=a_{0}
$$

An irreducibility test

Eisenstein's criterion (equivalent formulation)

Consider a polynomial

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x] .
$$

over a PID. If there is a prime ideal $P \unlhd R$ such that:

1. $a_{i} \in P$ for all $i<n$
2. $a_{n} \notin P$,
3. $a_{0} \notin P^{2}$.
then $f(x)$ is irreducible.

Eisenstein's criterion holds, more generally, over a UFD.
To prove this, assume

$$
f(x)=\left(b_{0}+b_{1} x+\cdots+b_{k} x^{k}\right)\left(c_{0}+c_{1} x+\cdots+c_{\ell} x^{\ell}\right) \in R[x], \quad k, \ell>0,
$$

and $p \mid b_{0}$.
Now, consider the smallest k for which $p \nmid b_{k} \ldots$
The remainder will be left as an exercise.

Polynomial rings over a field

Proposition

A polynomial $f(x) \in F[x]$ has a factor of degree 1 iff it has a root in F.

Proof

" $\Rightarrow:$: If $f(x)$ has a degree-1 factor, then $f(x)=g(x)(x-\alpha)$.
" $\Leftarrow:$ " If $f(\alpha)=0$, use the division algorithm to write

$$
f(x)=g(x)(x-\alpha)+r, \quad r \text { is constant. }
$$

But then $f(\alpha)=r=0$.

Corollary

A polynomial $f(x) \in F[x]$ of degree ≤ 3 is reducible of it has a root in F.

Polynomial rings over a field

Remarks

Let F be a field. Then $F[x]$ is Euclidean (and hence a PID).

1. The following are equivalent:
(i) $f(x)$ is irreducible,
(ii) $I=(f(x))$ is a maximal ideal of $F[x]$,
(iii) $F[x] /(f(x))$ is a field.
2. If a polynonomial factors as

$$
f(x)=f_{1}(x)^{d_{1}} f_{2}(x)^{d_{2}} \cdots f_{k}(x)^{d_{k}}, \quad f_{i}(x) \text { distinct irreducibles, }
$$

then $\operatorname{gcd}\left(f_{i}(x)^{d_{i}}, f_{j}(x)^{d_{j}}\right)=1$ for $i \neq j$.
By the Sunzi remainder theorem,

$$
F[x] /(f(x)) \cong F[x] /\left(f_{1}(x)^{d_{1}}\right) \times \cdots \times F[x] /\left(f_{k}(x)^{d_{k}}\right)
$$

Multivariate polynomial rings

We can define multivariate polynomial rings inductively.

Definition

The polynomial ring in variables x_{1}, \ldots, x_{n} over R is

$$
R\left[x_{1}, \ldots, x_{n}\right]:=R\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right] .
$$

Note that

$$
R\left[x_{1}\right] \subseteq R\left[x_{1}, x_{2}\right] \subseteq R\left[x_{1}, x_{2}, x_{3}\right] \subseteq \cdots, \quad R\left[x_{1}, x_{2}, x_{3}, \ldots\right]=\bigcup_{k=1}^{\infty} R\left[x_{1}, \ldots, x_{k}\right] .
$$

Not surprisingly, this last ring has non-finitely generated ideals, e.g., $I=\left(x_{1}, x_{2}, \ldots\right)$.
Perhaps surprisingly, this is not the case in $R\left[x_{1}, \ldots, x_{n}\right]$.

Hilbert's basis theorem

If R is a Noetherian ring, then $R\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian as well.

It suffices to prove this for $n=1$.

Proof of Hilbert's basis theorem

Given $I \unlhd R[x]$ and $m \geq 0$, the ideal of leading coefficients of degree- m polynomials is:

$$
I(m):=\left\{a_{m} \mid f(x)=a_{m} x^{m}+\cdots+a_{1} x+a_{0} \in I\right\} \cup\{0\} \unlhd R .
$$

Let $I_{r}(s)$ be a maximal element of $\left\{I_{n}(m) \mid n, m \geq 0\right\}$.

Proof of Hilbert's basis theorem

Lemma

Let $I \subseteq J$ be ideals of $R[x]$. If $I(m)=J(m)$ for all m, then $I=J$.

$$
\begin{aligned}
& \mathrm{J}(0) \subseteq \mathrm{J}(1) \subseteq \cdots \subseteq \mathrm{J}(\mathrm{~s}-1) \subseteq \mathrm{J}(\mathrm{~s}) \subseteq \cdots \\
& \text { || || || || } \\
& \mathrm{I}(0) \subseteq \mathrm{I}(1) \subseteq \cdots \subseteq \mathrm{I}(\mathrm{~s}-1) \subseteq \mathrm{I}(\mathrm{~s}) \subseteq \cdots
\end{aligned}
$$

Proof

If not, then pick $f(x) \in J-1$ of minimal degree $m>0$.
Since $I(m)=J(m)$, there is some $g(x) \in I$ of degree m with $f(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}, \quad g(x)=a_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}$. Then $f(x)-g(x)$ is in $J-I$ with smaller degree.

Proof of Hilbert's basis theorem

Let $n_{m}=$ where the sequence $I_{n}(m) \subseteq I_{n+1}(m) \subseteq \cdots$ stabilizes, and $N=\max _{0 \leq m<s}\left\{n_{m}\right\}$.

$$
I_{N}(m)=I_{N+i}(m), \forall m \geq 0 \Rightarrow I_{N}=I_{N+i}
$$

An counterexample to Hilbert's basis theorem?

The ring $R=2 \mathbb{Z}$ is Noetherian because every ideal is finitely generated (actually, principal).
Consider the polynomial ring

$$
\begin{aligned}
R[x]=2 \mathbb{Z}[x] & =\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{i} \in 2 \mathbb{Z}, n \in \mathbb{N}\right\} \\
& =\left\{2 c_{0}+2 c_{1} x+\cdots+2 c_{n} x^{n} \mid c_{i} \in \mathbb{Z}, n \in \mathbb{N}\right\},
\end{aligned}
$$

with the following ideals:

$$
\begin{gathered}
\text { (2) }=\left\{2 c_{0}+4 c_{1} x+\cdots+4 c_{n} x^{n} \mid c_{i} \in \mathbb{Z}, n \in \mathbb{N}\right\}, \\
(2,2 x)=\left\{2 c_{0}+2 c_{1} x+4 c_{2} x^{2}+\cdots+4 c_{n} x^{n} \mid c_{i} \in \mathbb{Z}, n \in \mathbb{N}\right\}, \\
\left(2,2 x, 2 x^{2}\right)=\left\{2 c_{0}+2 c_{1} x+2 c_{2} x^{2}+4 c_{3} x^{3}+\cdots+4 c_{n} x^{n} \mid c_{i} \in \mathbb{Z}, n \in \mathbb{N}\right\} . \\
\left(2,2 x, 2 x^{2}, 2 x^{3}\right)=\left\{2 c_{0}+2 c_{1} x+2 c_{2} x^{2}+2 c_{3} x^{3}+4 c_{4} x^{4}+\cdots+4 c_{n} x^{n} \mid c_{i} \in \mathbb{Z}, n \in \mathbb{N}\right\} .
\end{gathered}
$$

We now have an ascending sequence of ideals that does not terminate:

$$
\text { (2) } \subsetneq(2,2 x) \subsetneq\left(2,2 x, 2 x^{2}\right) \subsetneq\left(2,2 x, 2 x^{2}, 2 x^{3}\right) \subsetneq \cdots \text {. }
$$

Therefore, $R[x]$ is not Noetherian.

