
Chapter 10: Fields and Galois theory

Matthew Macauley

Department of Mathematical Sciences
Clemson University

http://www.math.clemson.edu/~macaule/

Math 4120, Visual Algebra

M. Macauley (Clemson) Chapter 10: Fields and Galois theory Math 4120, Visual Algebra 1 / 67

mailto:macaule@clemson.edu
http://www.math.clemson.edu/
http://www.clemson.edu/
http://www.math.clemson.edu/~macaule/
mailto:macaule@clemson.edu


Geometry and the Ancient Greeks

Plato (5th century B.C.) believed that the only “perfect” geometric
figures were the straight line and the circle.

In Ancient Greek geometry, this philosophy meant that there were only two instruments
available to perform geometric constructions:

1. the ruler: a single unmarked straight edge.

2. the compass: collapses when lifted from the page

Formally, this means that the only permissible
constructions are those granted by Euclid’s first
three postulates.
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Geometry and the Ancient Greeks

Around 300 BC, ancient Greek mathematician Euclid wrote a series
of thirteen books that he called The Elements.

It is a collection of definitions, postulates (axioms), and theorems &
proofs, covering geometry, elementary number theory, and the
Greek’s “geometric algebra.”

Book 1 contained Euclid’s famous 10 postulates, and other basic
propositions of geometry.

Euclid’s first three postulates
1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight line.

3. Given any straight line segment, a circle can be drawn having the segment as radius
and one endpoint as center.

Using only these tools, lines can be divided into equal segments, angles can be bisected,
parallel lines can be drawn, n-gons can be “squared,” and so on.
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Geometry and the Ancient Greeks

One of the chief purposes of Greek mathematics was to find exact constructions for various
lengths, using only the basic tools of a ruler and compass.

The ancient Greeks were unable to find constructions for the following problems:

Problem 1: Squaring the circle
Draw a square with the same area as a given circle.

Problem 2: Doubling the cube
Draw a cube with twice the volume of a given cube.

Problem 3: Trisecting an angle
Divide an angle into three smaller angles all of the same size.

For over 2000 years, these problems remained unsolved.

Alas, in 1837, Pierre Wantzel used field theory to prove that these constructions were
impossible.
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The search for the quintic

The quadradic formula is well-known. It gives us the two roots of a degree-2 polynomial
ax2 + bx + c = 0:

x1,2 =
−b ±

√
b2 − 4ac
2a

.

There are formulas for cubic and quartic polynomials, but they are very complicated. For
centuries, people wondered if there was a quintic formula. Nobody could find one.

In the 1830s, 19-year-old political activist Évariste Galois, with no formal
mathematical training proved that no such formula existed.

He invented the concept of a group to solve this problem, and turned
problems in field theory into ones in group theory.

After being challenged to a dual at age 20 that he knew he would lose, Galois spent the
last few days of his life frantically writing down what he had discovered.

In a final letter Galois wrote, “Later there will be, I hope, some people who will find it to
their advantage to decipher all this mess.”

Hermann Weyl (1885–1955) described Galois’ final letter as: “ if judged by the novelty and
profundity of ideas it contains, is perhaps the most substantial piece of writing in the whole
literature of mankind.” Thus was born the field of group theory!
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Fields

To do arithmetic, we need to be working in a field.

Definition
A set K with + and · is a field if the following three conditions hold:

K is an abelian group under addition.

K \ {0} is an abelian group under multiplication.

The distributive law holds: a(b + c) = ab + ac, for all a, b, c ∈ K .

A field homomorphism φ : K → L is just a ring homomorphism betweeen fields:

φ(x + y) = φ(x) + φ(y), φ(xy) = φ(x)φ(y), for all x , y ∈ K .

Key idea
Since fields are simple, every nonzero field homomorphism is an embedding.

In other words, we can’t ever take the quotient of a field K ; we can only “extend” it, into a
larger field K ↪→ L.
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Field extensions

Definition
If K and L are fields with K ⊂ L, we say that L is an extension of K , and write L/K .

The term “field extension” may refer to either

a pair K ⊆ L of a subfield K and extension field L;

an embedding K ↪→ L where K ⊆ L.

Key observation
If L/K is a field extension, then L is a vector space over K .

Definition
The degree of the extension L/K is the vector space dimension, [L : K ] := dimK (L).

Example

The smallest extension of Q that contains
√
m, called “Q adjoin

√
m” is:

Q(
√
m) =

{
a + b

√
m | a, b ∈ Q

}
=
{

p
q + r

s

√
m | p, q, r , s ∈ Z, q, s 6= 0

}
.

This is a 2-dimensional Q-vector space, with basis
{
1,
√
m
}
.
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The smallest extension field containing a set S

Definition
Suppose L/K is a field extension, and K ⊆ S ⊆ L. The extension of K generated by S is

K(S) :=
⋂ {

E | E/K is an extension s.t. S ⊆ E ⊆ L
}
.

We call this: “K adjoin S.”

The field K(S) can also be characterized as the elements that can be obtained from S
using finitely many field operations.

If S = {α}, then K(α) := K({α}) is a simple extension, and α is a primitive element.

Note that K(α) is the result of:

starting with the polynomial ring K [x ] and substituting α for x ,

constructing the field of fractions

K(α) =

{
f (α)

g(α)
| f (x), g(x) ∈ K [x ], g(α) 6= 0

}
.

If we want to adjoin multiple elements, α1, . . . , αn, we can write K(α1, . . . , αn).
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Splitting fields and algebraic closure

Definition
The splitting field of f (x) ∈ K [x ] is the field K(r1, . . . , rn).

The name comes from the fact that in this field, f (x) completely factors, or splits:

f (x) = (x − r1)(x − r2) · · · (x − rn) , ri ∈ K(r1, . . . , rn) .

Definition
A field K is algebraically closed if every polynomial f (x) ∈ K [x ] splits.

Fundamental theorem of algebra
The field C is algebraically closed.

Conversely, if K is not algebraically closed, then there are polynomials f (x) ∈ K [x ] that do
not split into linear factors over K .

Non-examples

Q is not algebraically closed because f (x) = x2 − 2 ∈ Q[x ] has a root
√
2 6∈ Q.

R is not algebraically closed because f (x) = x2 + 1 ∈ R[x ] has a root
√
−1 6∈ R.
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Splitting fields of Q

The splitting field of f (x) = x2 − 2 is Q(
√
2), the smallest field that contains both roots.

That is, f (x) = (x −
√
2)(x +

√
2) splits in Q(

√
2)[x ].

The splitting field of g(x) = (x2 − 2)(x2 + 1) can be constructed in two steps:

(i) Adjoin the roots of x2 − 2 to Q, yielding Q(
√
2);

(ii) Adjoin the roots of x2 + 1 to Q(
√
2), yielding Q(

√
2)(i).

An element in Q(
√
2, i) := Q(

√
2)(i) has the form

=α+ βi α, β ∈ Q(
√
2)

= (a + b
√
2) + (c + d

√
2)i a, b, c, d ∈ Q

= a + b
√
2 + ci + d

√
2i a, b, c, d ∈ Q

Q(
√
2, i) is a 4-dimensional Q-vector space, with basis

{
1,
√
2, i ,
√
2i
}
:

Q(
√
2, i) =

{
a + b

√
2 + ci + d

√
2i | a, b, c, d ∈ Q

}
That is, the degree of this extension is [Q(

√
2, i) : Q] = 4.
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Subfield lattices

The field
Q(
√
2, i) =

{
a + b

√
2 + ci + d

√
2i | a, b, c, d ∈ Q

}
has several subfields, which are Q-vector subspaces:

Q(
√
2), Q(i), Q(

√
−2), Q.

Like with did with a group and its subgroups, we can
arrange them in a lattice.

Each edge is labeled with the degree of the extension.

Alternatively, the label d of K ⊆ L is the degree of a
particular polynomial. . .

Q(
√
2, i)

Q(
√
2) Q(

√
−2) Q(i)

Q

2 2 2

2 2 2

To construct Q(
√
2)/Q, ajoin a root of x2 − 2 (get both).

To construct Q(i)/Q, ajoin a root of x2 + 1 (get both).

To construct Q(
√
−2)/Q, ajoin a root of x2 + 2 (get both).

To construct Q(
√
2, i)/Q, ajoin the root of (x2 − 2)(x2 + 1).
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Another extension field of Q

The polynomial f (x) = x3 − 2 splits over C as

f (x) = x3 − 2 = (x − 3√2)(x − 3√2ζ)(x − 3√2ζ2), ζ = e2πi/3 = − 1
2 +

√
3
2 i .

Its splitting field (i.e., smallest field over which it factors) is

K = Q(
3√2, ζ 3√2, ζ2 3√2).

But this field contains ζ 3√2/ 3√2 = ζ.

Thus, Q( 3√2, ζ) ⊆ K ; and “⊇” clearly holds.

ζ 3√2

ζ2 3√2

3√2

C

2π
3

There are other ways to write this field. Since ζ = − 1
2 +

√
3
2 i ∈ Q(ζ, 3√2), so does

2(ζ + 1
2 ) =

√
3i =

√
−3. Thus,

Q(ζ,
3√2) = Q(

√
−3, 3√2) = Q(

√
3i , 3√2).

This field is an extension of Q of degree 6 = [Q( 3√2, ζ) : Q]:

Q(ζ,
3√2) =

{
a + b 3√2 + c 3√4 + dζ + eζ 3√2 + f ζ 3√4 | a, b, c, d , e, f ∈ Q

}
.
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Subfields of Q(ζ, 3
√
2)

What are the subfields of

Q(ζ,
3√2) =

{
a + b 3√2 + c 3√4 + dζ + eζ 3√2 + f ζ 3√4 | a, b, c, d , e, f ∈ Q

}
?

Note that (ζ2)2 = ζ4 = ζ, and so Q(ζ2) = Q(ζ) =
{
a + bζ | a, b ∈ Q

}
.

Similarly, ( 3√4)2 = 2 3√2, and so Q( 3√4) = Q( 3√2) =
{
a + b 3√2 + c 3√4 | a, b, c ∈ Q

}
.

Each root generates a subfield: Q( 3√2), Q(ζ 3√2) and Q(ζ2 3√2).

Here is the subfield lattice:

Q

Q(ζ)

Q(ζ, 3√2)

Q( 3√2) Q(ζ 3√2) Q(ζ2 3√2)

2

3 3 3

3

2 2 2x3+2

x2+x+1

x2+x+1

x3+2

This lattice should look very familiar. . . but also a little different.

M. Macauley (Clemson) Chapter 10: Fields and Galois theory Math 4120, Visual Algebra 13 / 67

mailto:macaule@clemson.edu


Subfield lattices

The similarity between the subfield lattice of Q(ζ, 3√2) and subgroup lattice of D3 is not a
coincidence!

Because of this, we will henceforth draw all subfield lattices upside-down.

Q

Q(ζ)

Q(ζ, 3√2)

Q( 3√2) Q(ζ 3√2) Q(ζ2 3√2)

2

3
3

3

3

2 2 2

D3

〈r〉

〈1〉

〈f 〉 〈rf 〉 〈r2f 〉

2

3
3

3

3

2 2 2

To construct Q(ζ)/Q, ajoin a root of x2 + x + 1 (get both).

To construct Q(ζi 3√2)/Q, for i = 0, 1, 2, adjoin only one root of x3 + 2.

To construct Q(ζ, 3√2)/Q(ζ), adjoin one root of x2 + x + 1 (get both).

To construct Q(ζ, 3√2)/Q(ζi 3√2), for i = 0, 1, 2, adjoin one root of x2 + x + 1 (get both).
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Radicals

The roots of low-degree polynomials can be expressed using arithmetic and radicals.

For example, the roots of the polynomial f (x) = 5x4 − 18x2 − 27 are

x1,2 = ±

√
6
√
6 + 9
5

, x3,4 = ±

√
9− 6

√
6

5
.

Remark
The operations of arithmetic, and radicals, are really the “only way” we have to write down
generic complex numbers.

Thus, if there is some number that cannot be expressed using radicals, we have no way to
express it, unless we invent a special symbol for it (e.g., π or e).

Even weirder, since a computer program is just a string of 0s and 1s, there are only
countably infinite many possible programs.

Since R is an uncountable set, there are numbers (in fact, “almost all” numbers) that can
never be expressed algorithmically by a computer program! Such numbers are called
“uncomputable.”
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Algebraic and transcendental numbers

Definition
A complex number is algebraic (over Q) if it is the root of a polynomial in Z[x ]. The set A
of all algebraic numbers forms a field (this is not immediately obvious).

A number that is not algebraic over Q (e.g., π, e) is called transcendental.

Every number that can be expressed from the natural numbers using arithmetic and radicals
is algebraic. For example, consider

x =
5
√
1 +
√
−3 ⇐⇒ x5 = 1 +

√
−3

⇐⇒ x5 − 1 =
√
−3

⇐⇒ (x5 − 1)2 = −3
⇐⇒ x10 − 2x5 + 4 = 0 .

Question
Can all algebraic numbers be expressed using radicals?

This question was unsolved until the early 1800s.
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Complex conjugates

Recall that complex roots of f (x) ∈ Q[x ] come in
conjugate pairs: If r = a + bi is a root, then so is
r := a − bi .

For example, here are the roots of some polynomials
(degrees 2 through 5) plotted in the complex plane.
All of them exhibit symmetry across the x-axis.

•
1 + i

•
1− i

f (x) = x2 − 2x + 2

Roots: 1± i

x

y

•
2 + 1

2 i

•
2− 1

2 i

•
− 1
3

f (x) = 12x3 − 44x2 + 35x + 17

Roots: − 1
3 , 2±

1
2 i

x

y

•

√
2
2 +

√
2
2 i

•√
2
2 −

√
2
2 i

•
−
√
2
2 +

√
2
2 i

•
−
√
2
2 −

√
2
2 i

f (x) = x4 + 1

Roots: ±
√
2
2 ±

√
2
2

x

y

•
−2

•

1
2 + i

•
1
2 − i

•

3
2

•
3

f (x) = 8x5−28x4−6x3+83x2−117x+90

Roots: −2, 32 , 3,
1
2 i±i

x

y
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Irreducibility

Definition
A polynomial f (x) ∈ F [x ] is reducible over F if we can factor it as f (x) = g(x)h(x) for
some g(x), h(x) ∈ F [x ] of strictly lower degree. If f (x) is not reducible, we say it is
irreducible over F .

Examples

x2 − x − 6 = (x + 2)(x − 3) is reducible over Q.
x4 + 5x2 + 4 = (x2 + 1)(x2 + 4) is reducible over Q, but it has no roots in Q.
x3 − 2 is irreducible over Q, but reducible over Q( 3√2).

Remarks
If deg(f ) > 1 and has a root in F , then it is reducible over F .

Every polynomial in Z[x ] is reducible over C.
Eisenstein’s criterion is helpful for establishing irreducibility over Q.
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Extension fields as vector spaces

Recall that if E/F is a field extension, then E is an F -vector space.

The dimension of a vector space is the size of a basis.

Definition
The degree of an extension E/F , denoted [E : F ], is the dimension of E as an F -vector
space.

Equivalently, this is the number of terms in the expression for a general element for E using
coefficients from F .

Here are some examples of extensions we’ve seen:

Q(
√
2, i) =

{
a + b

√
2 + ci + d

√
2i | a, b, c, d ∈ Q

}
[Q(
√
2, i) : Q] = 4

=
{
α+ βi | α, β ∈ Q(

√
2)
}

[Q(
√
2, i) : Q(

√
2)] = 2

Q( 3√2, ζ) =
{
a+b 3√2+c 3√4+dζ+eζ 3√2+f ζ 3√4 | a, . . . , f ∈ Q

}
[Q(ζ, 3√2) : Q] = 6

=
{
α+ β 3√2 + γ 3√4 | α, β, γ ∈ Q(ζ)

}
[Q( 3√2, ζ) : Q(ζ)] = 3

=
{
p + qζ | p, q ∈ Q(ζ)

}
[Q( 3√2, ζ) : Q( 3√2)] = 2
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Field homomorphisms and extensions

A field homomorphism φ : F → E is just a ring homomorphism betweeen fields:

φ(x + y) = φ(x) + φ(y), φ(xy) = φ(x)φ(y), for all x , y ∈ F .

Key idea
Since fields have no nontrivial ideals, every nonzero field homomorphism is an embedding.

A field extension may refer to either

a pair F ⊆ E of a subfield E extension field F ;

an embedding F ↪→ E where F ⊆ E .

Two extensions F → E and K → L are equivalent if there are isomorphisms φ : F → K and
σ : K → L such that the following diagram commutes:

F K

E L

φ

σ

We’ll see that Q ⊆ Q(π) and Q ⊆ Q(x) are equivalent extensions.

Do you think that Q ⊆ Q( 3√2) and Q ⊆ Q(ζ 3√2) are equivalent?
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Algebraic extensions

Definition
A simple extension K(α) is algebraic if f (α) = 0 for some f (x) ∈ K [x ]. We say

“α is algebraic over K .”

Proposition
There is a unique monic polynomial m(x) ∈ K [x ] for which m(α) = 0, called the minimal
polynomial of α over K , and it is irreducible.

Proof
The polynomials f (x) in K [x ] for which f (α) = 0 form an ideal I .

Uniqueness. Since K [x ] is Euclidean (and thus a PID), we can write I = (m(x)) for some
unique monic polynomial. X

Irreducibility. Suppose m(x) = f (x)g(x), with f (x) and g(x) having lower degree.

Then m(α) = f (α)g(α) = 0 implies f (α) = 0 or g(α) = 0, contradiciting minimality. X
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Algebraic extensions

Let’s find the minimal polynomial of α =
√
2 +
√
3 over various extension fields.

It is elementary to check that
√
2α = 2 +

√
6,

√
3α = 3 +

√
6, α2 = 5 + 2

√
6, α2 = 49 + 20

√
6.

Over Q: m(x) = x4 − 10x2 + 1.

Over Q(
√
2): m(x) = x2 − 2

√
2x − 1.

Over Q(
√
3): m(x) = x2 − 2

√
3x + 13.

Over Q(
√
6): m(x) = x2 − (5 + 2

√
6).

Over Q(
√
2,
√
3): m(x) = x − (

√
2 +
√
3).

Q(
√
2,
√
3)

Q(
√
2) Q(

√
6) Q(

√
3)

Q

2 2 2

2 2 2

Key idea
The degree of the extension F (α) is the degree of the minimal polynomial m(α).
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Elements in simple extension

Polynomial lemma
If [F (α) : F ] <∞, then every s ∈ F (α) can be written uniquely as s = r(α), for some
r(x) ∈ F [x ] with deg(r(x)) < deg(mα(x)).

Proof
Existence. Given s ∈ F (α), write s = f (α)/g(α), for f , g ∈ F [x ].

Note that m(x) - g(x) since g(α) 6= 0, and since mα(x) is irreducible,

gcd
(
g(x),mα(x)

)
= 1 =⇒ a(x)g(x) + b(x)mα(x) = 1 for some a(x), b(x) ∈ F [x ]

=⇒ a(α)g(α) + b(α)mα(α)︸ ︷︷ ︸
=0

= 1

=⇒ s = f (α)a(α)

Divide m(x) into h(x) := f (x)a(x), to get

h(x) = q(x)m(x) + r(x), deg(r(x)) < deg(m(x)).

Plugging in α yields h(α) = r(α). X

Uniqueness. If s = r1(α) = r2(α), then r1(x)− r2(x)︸ ︷︷ ︸
deg<deg(m(x))

∈ (m(x)) ⇒ r1 − r2 = 0 �
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Elements in simple extension

Corollary
If α, β have the same minimal polynomial m(x) over F , then F (α) ∼= F (β).

Proof
By the polynomial lemma, the following map is a bijection:

σ : F (α) −→ F (β), σ : c0 + c1α+ · · ·+ cn−1αn−1 7−→ c0 + c1β + · · ·+ cn−1βn−1.

We have σ(x + y) = σ(x) +σ(y); it suffices to show σ(xy) = σ(x)σ(y) for all x , y ∈ F (α).

Let x = f (α), y = g(α), xy = h(α), for polynomals of degree less than degm(x).

f (α)g(α)− h(α) = xy − xy = 0 =⇒ m(x) |
[
f (x)g(x)− h(x)

]
.

Thus, m(x)q(x) = f (x)g(x)− h(x) for some q(x) ∈ F [x ], which rearranged is:

f (x)g(x) = m(x)q(x) + h(x), deg(h(x)) < deg(m(x)).

Plug in α to get f (α)g(α) = h(α). Similarly, f (β)g(β) = h(β). Note that

σ(xy) = h(β) = f (α)f (β) = σ(x)σ(y), �
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Algebraic extensions

Degree theorem
The degree of an algebraic extension [F (α) : F ] is the degree of the minimal polynomial
mα(x) in F [x ].

Proof

It suffices to show that
{
1, α, . . . , αn−1} is a basis.

By the polynomial lemma (existence), this set spans.

By the polynomial lemma (uniqueness), it is linearly independent. �

Definition
The extension E/F is algebraic if every element of E is algebraic over F .
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Algebraic extensions

Definition
An extension E/F is finite if [E : F ] <∞.

Lemma
Every finite extension is algebraic.

Proof
Suppose [E : F ] = n <∞. Pick any α ∈ E . Then {1, α, . . . , αn} is linearly dependent, so

c0 + c1α+ · · ·+ cnαn = 0, for some ci ∈ F .

The converse fails: Q(
√
2,
√
3,
√
5, . . . ) is not finite over Q.

As a corollary, the algebraic numbers A =
{
α ∈ C | α is algebraic over Q

}
are a field.

By the lemma, α ∈ A iff [Q(α) : Q] <∞. Let α, β ∈ A.

[Q(α, β) : Q] = [Q(α, β) : Q(α)][Q(α) : Q] <∞

Therefore, assuming a 6= 0,

[Q(α+ β) : Q] <∞, [Q(−α) : Q] <∞, [Q(αβ) : Q] <∞, [Q(α−1) : Q] <∞.
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Transcendental extensions

All simple transcendental extensions are equivalent:

F F

F (π) F (x)
σ
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Transcendental extensions

All simple transcendental extensions are equivalent:

F F

F (π) F (x)
σ
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Field automorphisms

Recall that every automorphism of an extension field F of Q fixes all elements of Q.

Definition
If K/F is a field extension, let Aut(K/F ) be the automorphism of K that fix F .

Proposition (HW)

If K/F is a field extension, then Aut(K) is a group and Aut(K/F ) is a subgroup.
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Field automorphisms

Key idea
Elements of Aut(K/F ) permute the roots of irreduicible polynomials.

Proposition
Let K/F be a field extension, and r ∈ K algebraic over F with minimal polynomial mr (x).
If σ ∈ Aut(K/F ), then σ(r) is also root of mr (x).

Suppose r is a root of f (x); say

rn + cn−1rn−1 + · · ·+ c1r + c0 = 0.

Apply σ ∈ Aut(K/F ):

σ(f (r)) = σ(rn + cn−1rn−1 + · · ·+ c1r + c0)

= σ(rn) + σ(cn−1rn−1) + · · ·+ σ(c1r) + σ(c0)

= (σ(r))n + σ(cn−1)(σ(r))n−1 + · · ·+ σ(c1)σ(r) + σ(c0)

= (σ(r))n + cn−1(σ(r))n−1 + · · ·+ c1σ(r) + c0
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Field automorphisms

Recall that an automorphism of a group G is an isomorphism φ : G → G .

Definition
An automorphism of a field F is a bijection φ : F → F such that for all a, b ∈ F ,

φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b) .

In other words, φ must preserve the structure of the field.

For example, let F = Q(
√
2). Verify (HW) that the function

φ : Q(
√
2) −→ Q(

√
2) , φ : a + b

√
2 7−→ a − b

√
2 .

is an automorphism. That is, show that

φ((a + b
√
2) + (c + d

√
2)) = · · · = φ(a + b

√
2) + φ(c + d

√
2)

φ((a + b
√
2)(c + d

√
2)) = · · · = φ(a + b

√
2)φ(c + d

√
2).

What other field automorphisms of Q(
√
2) are there?
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A defining property of field automorphisms

Proposition
If φ is an automorphism of an extension field F of Q, then

φ(q) = q for all q ∈ Q.

Proof
Suppose that φ(1) = q. Clearly, q 6= 0. (Why?) Observe that

q = φ(1) = φ(1 · 1) = φ(1)φ(1) = q2 .

Similarly,
q = φ(1) = φ(1 · 1 · 1) = φ(1)φ(1)φ(1) = q3 .

And so on. It follows that qn = q for every n ≥ 1. Thus, q = 1. �

Corollary
√
2 is irrational. �
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The Galois group of a field extension

We showed that if E/Q, then every automorphism of E must fix Q.

Definition
The Galois group of a field extension E/F , denoted Gal(E/F ), is the group of
automorphisms of E that fix F .

Here are some examples (without proof):

Gal(Q(
√
2)/Q) = 〈f 〉 ∼= C2 , where f :

√
2 7−→ −

√
2

An automorphism of Q(
√
2, i) is determined by the image of

√
2 and i .

There are four possibilities: the identity map e, and{
h(
√
2) = −

√
2

h(i) = i

{
v(
√
2) =

√
2

v(i) = −i

{
r(
√
2) = −

√
2

r(i) = −i

Thus, the Galois group of F is Gal(Q(
√
2, i)/Q) = 〈h, v〉 ∼= V4.

Q( 3√2, ζ) = 〈r , f 〉, where{
r( 3√2) = ζ 3√2

r(ζ) = ζ

{
f ( 3√2) = 3√2
f (ζ) = ζ̄ = ζ2
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The Galois group of a polynomial

Definition
Let f ∈ Z[x ] be a polynomial, with roots r1, . . . , rn. The splitting field of f is the field

Q(r1, . . . , rn) .

The splitting field F of f (x) has several equivalent characterizations:

the smallest field that contains all of the roots of f (x);

the smallest field in which f (x) splits into linear factors:

f (x) = (x − r1)(x − r2) · · · (x − rn) ∈ F [x ] .

Recall that the Galois group of an extension F ⊇ Q is the group of automorphisms of F ,
denoted Gal(F ).

Definition
The Galois group of a polynomial f (x) is the Galois group of its splitting field, denoted
Gal(f (x)).
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A few examples of Galois groups
The polynomial x2 − 2 splits in Q(

√
2), so

Gal(x2 − 2) = Gal(Q(
√
2)) ∼= C2 .

The polynomial x2 + 1 splits in Q(i), so

Gal(x2 + 1) = Gal(Q(i)) ∼= C2 .

The polynomial x2 + x + 1 splits in Q(ζ), where ζ = e2πi/3, so

Gal(x2 + x + 1) = Gal(Q(ζ)) ∼= C2 .

The polynomial x3 − 1 = (x − 1)(x2 + x + 1) also splits in Q(ζ), so

Gal(x3 − 1) = Gal(Q(ζ)) ∼= C2 .

The polynomial x4 − x2 − 2 = (x2 − 2)(x2 + 1) splits in Q(
√
2, i), so

Gal(x4 − x2 − 2) = Gal(Q(
√
2, i)) ∼= V4 .

The polynomial x4 − 5x2 + 6 = (x2 − 2)(x2 − 3) splits in Q(
√
2,
√
3), so

Gal(x4 − 5x2 + 6) = Gal(Q(
√
2,
√
3)) ∼= V4 .

The polynomial x3 − 2 splits in Q(ζ, 3√2), so

Gal(x3 − 2) = Gal(Q(ζ,
3√2)) ∼= D3 ???
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The tower law of field extensions

Recall that if we had a chain of subgroups K ≤ H ≤ G , then the index satisfies a tower
law: [G : K ] = [G : H][H : K ].

Not surprisingly, the degree of field extensions obeys a similar tower law:

Theorem (Tower law)
For any chain of field extensions, F ⊂ E ⊂ K ,

[K : F ] = [K : E ][E : F ].

We have already observed this in our subfield lattices:

[Q(
√
2,
√
3) : Q] = [Q(

√
2,
√
3) : Q(

√
2)︸ ︷︷ ︸

min. poly: x2−3

][ Q(
√
2) : Q︸ ︷︷ ︸

min. poly: x2−2

] = 2 · 2 = 4 .

Here is another example:

[Q(ζ,
3√2) : Q] = [Q(ζ,

3√2) : Q(
3√2)︸ ︷︷ ︸

min. poly: x2+x+1

][ Q(
3√2) : Q︸ ︷︷ ︸

min. poly: x3−2

] = 2 · 3 = 6 .
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Theorem (Tower law)
For any chain of field extensions, K ⊂ L ⊂ M,

[M : K ] = [M : L][L : K ].

Proof
Let {xi}i∈I be a basis for M/L, and {yj}j∈J a basis for L/M.

We’ll show that
{
xiyj
}
i∈I , j∈J is a basis for M/K .

Independent. Suppose
∑
i ,j

kijxiyi = 0. Rearranging this yields

∑
j

(∑
i

kijxi︸ ︷︷ ︸
=0

)
yj = 0 =⇒ all kij = 0.

Spans. Consider m ∈ M. We can write:

m =
∑
j

`jyj , for `j ∈ L, and `j =
∑
i

kijxi , for ki ∈ K .

Substituting yields m =
∑
i ,j

κi ,jxiyj . �
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Primitive elements

Primitive element theorem
If F is an extension of Q with [F : Q] <∞, then F has a primitive element: some α 6∈ Q
for which F = Q(α).

How do we find a primitive element α of F = Q(
√
2 +
√
3)? Let’s try α =

√
2 +
√
3 ∈ F .

Which of the five subfields is Q(α) = Q(
√
2 +
√
3)?

The following are equivalent (why?):

(i) α is primitive in F ;

(ii) [Q(α) : Q] = 4;

(iii) the minimal polynomial m(x) of α has degree 4;

Q(
√
2,
√
3)

Q(
√
2) Q(

√
6) Q(

√
3)

Q

2 2 2

2 2 2

Also, note that

α4 = 49 + 20
√
6, α2 = 5 + 2

√
6, α4 − 10α = −1.

The minimal polynomial of α is m(x) = x4 − 10x2 + 1
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Primitive elements

Primitive element theorem
If F is an extension of Q with [F : Q] <∞, then F has a primitive element: some α 6∈ Q
for which F = Q(α).

How do we find a primitive element α of F = Q( 3√2, ζ) = Q(i
√
3, 3√2)?

Let’s try α = i
√
3 3√2 ∈ F . Clearly, [Q(α) : Q] ≤ 6. Observe that

α2 = −3 3√4, α3 = −6i
√
3, α4 = −18 3√2, α5 = 18i 3√4

√
3, α6 = −108.

Thus, α is a root of x6 + 108. The following are equivalent (why?):

(i) α is a primitive element of F ;

(ii) [Q(α) : Q] = 6;

(iii) the minimal polynomial m(x) of α has degree 6;

(iv) x6 + 108 is irreducible (and hence must be m(x)).

In fact, [Q(α) :Q] = 6 holds because both 2 and 3 divide [Q(α) :Q]:

[Q(α) :Q] = [Q(α) :Q(i
√
3)] [Q(i

√
3) :Q]︸ ︷︷ ︸

=2

, [Q(α) :Q] = [Q(α) :Q(
3√2)] [Q(

3√2) :Q]︸ ︷︷ ︸
=3

.
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An example: The Galois group of x4 − 5x2 + 6

The polynomial f (x) = (x2 − 2)(x2 − 3) = x4 − 5x2 + 6 has splitting field Q(
√
2,
√
3).

We already know that its Galois group should be V4. Let’s compute it explicitly; this will
help us understand it better.

We need to determine all automorphisms φ of Q(
√
2,
√
3). We know:

φ is determined by where it sends the basis elements {1,
√
2,
√
3,
√
6}.

φ must fix 1.

If we know where φ sends two of {
√
2,
√
3,
√
6}, then we know where it sends the

third, because
φ(
√
6) = φ(

√
2
√
3) = φ(

√
2)φ(

√
3) .

In addition to the identity automorphism e, we have{
φ2(
√
2) = −

√
2

φ2(
√
3) =

√
3

{
φ3(
√
2) =

√
2

φ3(
√
3) = −

√
3

{
φ4(
√
2) = −

√
2

φ4(
√
3) = −

√
3

Question

What goes wrong if we try to make φ(
√
2) =

√
3?
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An example: The Galois group of x4 − 5x2 + 6

There are 4 automorphisms of F = Q(
√
2,
√
3), the splitting field of x4 − 5x2 + 6:

e : a + b
√
2 + c

√
3 + d

√
6 7−→ a + b

√
2 + c

√
3 + d

√
6

φ2 : a + b
√
2 + c

√
3 + d

√
6 7−→ a − b

√
2 + c

√
3− d

√
6

φ3 : a + b
√
2 + c

√
3 + d

√
6 7−→ a + b

√
2− c

√
3− d

√
6

φ4 : a + b
√
2 + c

√
3 + d

√
6 7−→ a − b

√
2− c

√
3 + d

√
6

They form the Galois group of x4 − 5x2 + 6. The multiplication table and Cayley graph are
shown below.

e

φ2

φ3

φ4

e φ2 φ3 φ4

e

φ2

φ3

φ4

φ2

e

φ4

φ3

φ3

φ4

e

φ2

φ4

φ3

φ2

e

e

φ3

φ2

φ4

•• ••
x

y

−
√
2−

√
3

√
2
√
3

φ2

φ3

Remarks

α =
√
2 +
√
3 is a primitive element of F , i.e., Q(α) = Q(

√
2,
√
3).

There is a group action of Gal(f (x)) on the set of roots S = {±
√
2,±
√
3} of f (x).
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The Galois group acts on the roots

Theorem
If f ∈ Z[x ] is a polynomial with a root in a field extension F of Q, then any automorphism
of F permutes the roots of f .

Said differently, we have an action of Gal(f (x)) on the set S = {r1, . . . , rn} of roots of f (x).

That is, we have a homomorphism

ψ : Gal(f (x)) −→ Perm({r1, . . . , rn}) .

If φ ∈ Gal(f (x)), then ψ(φ) is a permutation of the roots of f (x).

This permutation is what results by “pressing the φ-button” – it permutes the roots of f (x)
via the automorphism φ of the splitting field of f (x).

Corollary
If the degree of f ∈ Z[x ] is n, then the Galois group of f is a subgroup of Sn.
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The Galois group acts on the roots

The next results says that “Q can’t tell apart the roots of an irreducible polynomial.”

The “One orbit theorem”
Let r1 and r2 be roots of an irreducible polynomial over Q. Then
(a) There is an isomorphism φ : Q(r1) −→ Q(r2) that fixes Q and with φ(r1) = r2.

(b) This remains true when Q is replaced with any extension field F , where Q ⊂ F ⊂ C.

Corollary
If f (x) is irreducible over Q, then for any two roots r1 and r2 of f (x), the Galois group
Gal(f (x)) contains an automorphism φ : r1 7−→ r2.

In other words, if f (x) is irreducible, then the action of Gal(f (x)) on the set
S = {r1, . . . , rn} of roots has only one orbit.
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Normal field extensions

Definition
An extension field E of F is normal if it is the splitting field of some polynomial f (x).

If E is a normal extension over F , then every irreducible polynomial in F [x ] that has a root
in E splits over F .

Thus, if you can find an irreducible polynomial that has one, but not all of its roots in E ,
then E is not a normal extension.

Normal extension theorem
The degree of a normal extension is the order of its Galois group.

Corollary
The order of the Galois group of a polynomial f (x) is the degree of the extension of its
splitting field over Q.
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Normal field extensions: Examples

Consider Q(ζ, 3√2) = Q(α), the splitting field
of f (x) = x3 − 2.

It is also the splitting field of
m(x) = x6 + 108, the minimal polynomial of
α = 3√2

√
−3.

Let’s see which of its intermediate subfields
are normal extensions of Q.

Q

Q(ζ)

Q(ζ, 3√2)

Q( 3√2) Q(ζ 3√2) Q(ζ2 3√2)

2

3
3

3

3

2 2 2

Q: Trivially normal.

Q(ζ): Splitting field of x2 + x + 1; roots are ζ, ζ2 ∈ Q(ζ). Normal.

Q( 3√2): Contains only one root of x3 − 2, not the other two. Not normal.

Q(ζ 3√2): Contains only one root of x3 − 2, not the other two. Not normal.

Q(ζ2 3√2): Contains only one root of x3 − 2, not the other two. Not normal.

Q(ζ, 3√2): Splitting field of x3 − 2. Normal.

By the normal extension theorem,

|Gal(Q(ζ))| = [Q(ζ) : Q] = 2 , |Gal(Q(ζ,
3√2))| = [Q(ζ,

3√2) : Q] = 6 .

Moreover, you can check that |Gal(Q( 3√2))| = 1 < [Q( 3√2) : Q] = 3.
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The Galois group of x3 − 2

We can now conclusively determine the Galois group of x3 − 2.

By definition, the Galois group of a polynomial is the Galois group of its splitting field, so
Gal(x3 − 2) = Gal(Q(ζ, 3√2)).

By the normal extension theorem, the order of the Galois group of f (x) is the degree of the
extension of its splitting field:

|Gal(Q(ζ,
3√2))| = [Q(ζ,

3√2) : Q] = 6 .

Since the Galois group acts on the roots of x3 − 2, it must be a subgroup of S3 ∼= D3.

There is only one subgroup of S3 of order 6, so Gal(x3 − 2) ∼= S3. Here is the action graph
of Gal(x3 − 2) acting on the set S = {r1, r2, r3} of roots of x3 − 2:

{
r : 3√2 7−→ ζ 3√2
r : ζ 7−→ ζ

{
f : 3√2 7−→ 3√2
f : ζ 7−→ ζ2

•
r1

•
r2

•
r3

x

y

f

r
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Paris, May 31, 1832

The night before a duel that Évariste Galois knew
he would lose, the 20-year-old stayed up late
preparing his mathematical findings in a letter to
Auguste Chevalier.

Hermann Weyl (1885–1955) said “This letter, if
judged by the novelty and profundity of ideas it
contains, is perhaps the most substantial piece of
writing in the whole literature of mankind.”

Fundamental theorem of Galois theory
Given f ∈ Z[x ], let F be the splitting field of f , and G the Galois group. Then the
following hold:

(a) The subgroup lattice of G is identical to the subfield lattice of F , but upside-down.
Moreover, H C G if and only if the corresponding subfield is a normal extension of Q.

(b) Given an intermediate field Q ⊂ K ⊂ F , the corresponding subgroup H < G contains
precisely those automorphisms that fix K .
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An example: the Galois correspondence for f (x) = x3 − 2

Q

Q(ζ)

Q(ζ, 3√2)

Q( 3√2) Q(ζ 3√2) Q(ζ2 3
√
2)

2

3
3

3

3

2 2 2

Subfield lattice of Q(ζ, 3√2) ∼= D3

D3

〈r〉

〈1〉

〈f 〉 〈rf 〉 〈r2f 〉

2

3
3

3

3

2 2 2

Subgroup lattice of Gal(Q(ζ, 3√2)) ∼= D3

The automorphisms that fix Q are precisely those in D3.

The automorphisms that fix Q(ζ) are precisely those in 〈r〉.
The automorphisms that fix Q( 3√2) are precisely those in 〈f 〉.
The automorphisms that fix Q(ζ 3√2) are precisely those in 〈rf 〉.
The automorphisms that fix Q(ζ2 3√2) are precisely those in 〈r2f 〉.
The automorphisms that fix Q(ζ, 3√2) are precisely those in 〈e〉.

The normal field extensions of Q are: Q, Q(ζ), and Q(ζ, 3√2).

The normal subgroups of D3 are: D3, 〈r〉 and 〈e〉.
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An example: the Galois correspondence for f (x) = x8 − 2

The splitting field of x8 − 2 over Q is Q( 8√2, i), a degree-16 extension over Q. Its Galois
group is the semidihedral group G = SD8:

SD8 = 〈σ, τ | σ8 = 1, τ2 = 1, στ = τσ3〉 .

Let ζ = e2πi/8

8√2 σ7−→ ζ 8√2
i 7−→ i

8√2 τ7−→ 8√2
i 7−→ −i

〈σ4〉

〈σ2〉〈σ2τ, σ4〉〈σ4 , τ〉 〈στ〉 〈σ3τ〉

〈σ2 , τ〉 〈σ〉 〈σ2 , στ〉

〈σ, τ〉

〈e〉

〈σ6τ〉〈σ2τ〉〈σ4τ〉〈τ〉

Exercise

The subfields of Q( 8√2, i) are: Q, Q(i), Q(
√
2), Q( 4√2), Q( 8√2), Q(

√
2i), Q( 4√2i), Q( 8√2i),

Q(
√
2, i), Q( 4√2, i), Q((1+ i) 4√2), Q((1− i) 4√2), Q(ζ 8√2), Q(ζ3 8√2). Construct the subfield lattice.
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Solvability

Definition
A group G is solvable if it has a chain of subgroups:

{e} = N0 C N1 C N2 C · · ·C Nk−1 C Nk = G .

such that each quotient Ni/Ni−1 is abelian.

Note: Each subgroup Ni need not be normal in G , just in Ni+1.

Examples
D4 = 〈r , f 〉 is solvable. There are many possible chains:

〈e〉C 〈f 〉C 〈r2, f 〉CD4 , 〈e〉C 〈r〉CD4 , 〈e〉C 〈r2〉CD4.

Any abelian group A is solvable: take N0 = {e} and N1 = A.

For n ≥ 5, the group An is simple and non-abelian. Thus, the only chain of normal
subgroups is

N0 = {e}C An = N1 .

Since N1/N0 ∼= An is non-abelian, An is not solvable for n ≥ 5.
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Some more solvable groups

D3 ∼= S3 is solvable: {e}C 〈r〉CD3.

{e}

〈rf 〉 〈r2f 〉〈f 〉

〈r〉

D3 = 〈r , f 〉

〈r〉
{e}
∼=C3, abelian

D3
〈r〉
∼=C2, abelian

{e}

C2

C3 C3 C3 C3

C4C4 C4

C6 C6 C6 C6

Q8

G

Q4
C2
∼=V4,

abelian

C2
{e}
∼=C2,

abelian

G
Q4
∼=C3, abelian

The group above at right is denoted G = SL(2, 3). It consists of all 2× 2 matrices with
determinant 1 over the field Z3 = {0, 1,−1}.

SL(2, 3) has order 24, and is the smallest solvable group that requires a three-step chain of
normal subgroups.
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The hunt for an unsolvable polynomial

The following lemma follows from the Correspondence Theorem. (Why?)

Lemma
If N C G , then G is solvable if and only if both N and G/N are solvable.

Corollary
Sn is not solvable for all n ≥ 5. (Since An C Sn is not solvable).

Galois’ theorem
A field extension E ⊃ Q contains only elements expressible by radicals if and only if its
Galois group is solvable.

Corollary
f (x) is solvable by radicals if and only if it has a solvable Galois group.

Thus, any polynomial with Galois group S5 is not solvable by radicals!
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An unsolvable quintic!

To find a polynomial not solvable by radicals, we’ll look for a polynomial f (x) with
Gal(f (x)) ∼= S5.

We’ll restrict our search to degree-5 polynomials, because Gal(f (x)) ≤ S5 for any degree-5
polynomial f (x).

Key observation
Recall that for any 5-cycle σ and 2-cycle (=transposition) τ ,

S5 = 〈σ, τ〉 .

Moreover, the only elements in S5 of order 5 are 5-cycles, e.g., σ = (a b c d e).

Let f (x) = x5 + 10x4 − 2. It is irreducible by Eisenstein’s criterion (use p = 2). Let
F = Q(r1, . . . , r5) be its splitting field.

Basic calculus tells us that f exactly has 3 real roots. Let r1, r2 = a ± bi be the complex
roots, and r3, r4, and r5 be the real roots.

Since f has distinct complex conjugate roots, complex conjugation is an automorphism
τ : F −→ F that transposes r1 with r2, and fixes the three real roots.
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An unsolvable quintic!

We just found our transposition τ = (r1 r2). All that’s left is to find an element (i.e., an
automorphism) σ of order 5.

Take any root ri of f (x). Since f (x) is irreducible, it is the minimal polynomial of ri . By the
Degree Theorem,

[Q(ri ) : Q] = deg(minimum polynomial of ri ) = deg f (x) = 5 .

The splitting field of f (x) is F = Q(r1, . . . , r5), and by the normal extension theorem, the
degree of this extension over Q is the order of the Galois group Gal(f (x)).

Applying the tower law to this yields

|Gal(f (x))| = [Q(r1, r2, r3, r4, r5) : Q] = [Q(r1, r2, r3, r4, r5) : Q(r1)] [Q(r1) : Q]︸ ︷︷ ︸
=5

.

Thus, |Gal(f (x))| is a multiple of 5, so Cauchy’s theorem guarantees that G has an
element σ of order 5.

Since Gal(f (x)) has a 2-cycle τ and a 5-cycle σ, it must be all of S5.

Gal(f (x)) is an unsolvable group, so f (x) = x5 + 10x4 − 2 is unsolvable by radicals!
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Summary of Galois’ work

Let f (x) be a degree-n polynomial in Z[x ] (or Q[x ]). The roots of f (x) lie in some splitting
field F ⊇ Q.

The Galois group of f (x) is the automorphism group of F . Every such automorphism fixes
Q and permutes the roots of f (x).

This is a group action of Gal(f (x)) on the set of n roots! Thus, Gal(f (x)) ≤ Sn.

There is a 1–1 correspondence between subfields of F and subgroups of Gal(f (x)).

A polynomial is solvable by radicals iff its Galois group is a solvable group.

The symmetric group S5 is not a solvable group.

Since S5 = 〈τ, σ〉 for a 2-cycle τ and 5-cycle σ, all we need to do is find a degree-5
polynomial whose Galois group contains a 2-cycle and an element of order 5.

If f (x) is an irreducible degree-5 polynomial with 3 real roots, then complex conjugation is
an automorphism that transposes the 2 complex roots. Moreover, Cauchy’s theorem tells
us that Gal(f (x)) must have an element of order 5.

Thus, f (x) = x5 + 10x4 − 2 is not solvable by radicals!

M. Macauley (Clemson) Chapter 10: Fields and Galois theory Math 4120, Visual Algebra 55 / 67

mailto:macaule@clemson.edu


What does it mean to be “constructible”?

Assume P0 is a set of points in R2 (or equivalently, in the complex plane C).

Definition
The points of intersection of any two distinct lines or circles are constructible in one step.

A point r ∈ R2 is constructible from P0 if there is a finite sequence r1, . . . , rn = r of points
in R2 such that for each i = 1, . . . , n, the point ri is constructible in one step from
P0 ∪ {r1, . . . , ri−1}.

Example: bisecting a line

1. Start with a line p1p2;

2. Draw the circle of center p1 of radius p1p2;

3. Draw the circle of center p2 of radius p1p2;

4. Let r1 and r2 be the points of intersection;

5. Draw the line r1r2;

6. Let r3 be the intersection of p1p2 and r1r2.

•
p1

•
p2

•

•

r1

r2

•
r3
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Bisecting an angle

Example: bisecting an angle

1. Start with an angle at A;

2. Draw a circle centered at A;

3. Let B and C be the points of intersection;

4. Draw a circle of radius BC centered at B;

5. Draw a circle of radius BC centered at C ;

6. Let D and E be the intersections of these 2
circles;

7. Draw a line through DE .

•
A

•
B

•
C

•
D

•
E

•
reiθ/2

C

Suppose A is at the origin in the complex plane. Then B = r and C = re iθ.

Bisecting an angle means that we can construct re iθ/2 from re iθ.
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Constructible numbers: Real vs. complex

Henceforth, we will say that a point is constructible if it is constructible from the set

P0 = {(0, 0), (1, 0)} ⊂ R2 .

Say that z = x + yi ∈ C is constructible if (x , y) ∈ R2 is constructible. Let K ⊆ C denote
the constructible numbers.

Lemma
A complex number z = x + yi is constructible if x and y are constructible.

By the following lemma, we can restrict our focus on real constructible numbers.

Lemma
1. K ∩ R is a subfield of R if and only if K is a subfield of C.
2. Moreover, K ∩ R is closed under (nonnegative) square roots if and only if K is closed

under (all) square roots.

K ∩ R closed under square roots means that a ∈ K ∩ R+ implies
√
a ∈ K ∩ R.

K closed under square roots means that z = re iθ ∈ K implies
√
z =
√
re iθ/2 ∈ K .
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The field of constructible numbers

Theorem
The set of constructible numbers K is a subfield of C that is closed under taking square
roots and complex conjugation.

Proof (sketch)
Let a and b be constructible real numbers, with a > 0. It is elementary to check that each
of the following hold:

1. −a is constructible;

2. a + b is constructible;

3. ab is constructible;

4. a−1 is constructible;

5.
√
a is constructible;

6. a − bi is constructible provided that a + bi is.

Corollary

If a, b, c ∈ C are constructible, then so are the roots of ax2 + bx + c.
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Constructions as field extensions

Let F ⊂ K be a field generated by ruler and compass constructions.

Suppose α is constructible from F in one step. We wish to determine [F (α) : F ].

The three ways to construct new points from F
1. Intersect two lines. The solution to ax + by = c and dx + ey = f lies in F .

2. Intersect a circle and a line. The solution to{
ax + by = c
(x − d)2 + (y − e)2 = r2

lies in (at most) a quadratic extension of F .

3. Intersect two circles. We need to solve the system{
(x − a)2 + (y − b)2 = s2

(x − d)2 + (y − e)2 = r2

Multiply this out and subtract. The x2 and y2 terms cancel, leaving the equation of a
line. Intersecting this line with one of the circles puts us back in Case 2.

In all of these cases, [F (α) : F ] ≤ 2.
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Constructions as field extensions

In others words, constructing a number α 6∈ F in one step amounts to taking a degree-2
extension of F .

Theorem
A complex number α is constructible if and only if there is a tower of field extensions

Q = K0 ⊂ K1 ⊂ · · · ⊂ Kn ⊂ C

where α ∈ Kn and [Ki+1 : Ki ] ≤ 2 for each i .

Corollary
The set K ⊂ C of constructible numbers is a field. Moreover, if α ∈ K , then
[Q(α) : Q] = 2n for some integer n.

Next, we will show that the ancient Greeks’ classical construction problems are impossible
by demonstrating that each would yield a number α ∈ R such that [Q(α) : Q] is not a
power of two.
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Classical constructibility problems, rephrased

Problem 1: Squaring the circle

Given a circle of radius r (and hence of area πr2), construct a square of area πr2 (and
hence of side-length

√
πr).

If one could square the circle, then
√
π ∈ K ⊂ C, the field of constructible numbers.

However,
Q ⊂ Q(π) ⊂ Q(

√
π)

and so [Q(
√
π) : Q] ≥ [Q(π) : Q] =∞. Hence

√
π is not constructible.

Problem 2: Doubling the cube

Given a cube of length ` (and hence of volume `3), construct a cube of volume 2`3 (and
hence of side-length 3√2`).

If one could double the cube, then 3√2 ∈ K .

However, [Q( 3√2) : Q] = 3 is not a power of two. Hence 3√2 is not constructible.
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Classical constructibility problems, rephrased

Problem 3: Trisecting an angle

Given e iθ, construct e iθ/3. Or equivalently, construct cos(θ/3) from cos(θ).

We will show that θ = 60◦ cannot be trisected. In other words, that α = cos(20◦) cannot
be constructed from cos(60◦).

The triple angle formula yields

cos(θ) = 4 cos3(θ/3)− 3 cos(θ/3) .

Set θ = 60◦. Plugging in cos(θ) = 1/2 and α = cos(20◦) gives

4α3 − 3α−
1
2

= 0 .

Changing variables by u = 2α, and then multiplying through by 2:

u3 − 3u − 1 = 0 .

Thus, u is the root of the (irreducible!) polynomial x3 − 3x − 1. Therefore, [Q(u) : Q] = 3,
which is not a power of 2.

Hence, u = 2 cos(20◦) is not constructible, so neither is α = cos(20◦).
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Classical constructibility problems, resolved

The three classical ruler-and-compass constructions that stumped the ancient Greeks,
when translated in the language of field theory, are as follows:

Problem 1: Squaring the circle

Construct
√
π from 1.

Problem 2: Doubling the cube

Construct 3√2 from 1.

Problem 3: Trisecting an angle
Construct cos(θ/3) from cos(θ). [Or cos(20◦) from 1.]

Since none of these numbers these lie in an extension of Q of degree 2n, they are not
constructible.

If one is allowed a “marked ruler,” then these constructions become possible, which the
ancient Greeks were aware of.
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Construction of regular polygons

The ancient Greeks were also interested in constructing regular polygons. They knew
constructions for 3-, 5-, and 15-gons.

In 1796, nineteen-year-old Carl Friedrich Gauß, who was undecided
about whether to study mathematics or languages, discovered how
to construct a regular 17-gon.

Gauß was so pleased with his discovery that he dedicated his life to
mathematics.

He also proved the following theorem about which n-gons are constructible.

Theorem (Gauß, Wantzel)

Let p be an odd prime. A regular p-gon is constructible if and only if p = 22
n

+ 1 for some
n ≥ 0.

The next question to ask is for which n is 22
n

+ 1 prime?
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Construction of regular polygons and Fermat primes

Definition

The nth Fermat number is Fn := 22
n

+ 1. If Fn is prime, then it is a Fermat prime.

The first few Fermat primes are F0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537.

They are named after Pierre Fermat (1601–1665), who conjectured in the 1600s that all
Fermat numbers Fn = 22

n
+ 1 are prime.
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Construction of regular polygons and Fermat primes

In 1732, Leonhard Euler disproved Fermat’s
conjecture by demonstrating

F5 = 22
5
+1 = 232+1 = 4294967297 = 641·6700417 .

It is not known if any other Fermat primes exist!

So far, every Fn is known to be composite for 5 ≤ n ≤ 32. In 2014, a computer showed
that 193× 23329782 + 1 is a prime factor of

F3329780 = 22
3329780

+ 1 > 1010
106
.

Theorem (Gauß, Wantzel)

A regular n-gon is constructible if and only if n = 2kp1 · · · pm, where p1, . . . , pm are distinct
Fermat primes.

If these type of problems interest you, take Math 4100! (Number theory)
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