Math 4120, Midterm 1. March 6, 2024

Write your answers for these problems *directly on this paper*. You should be able to fit them in the space given.

1. (10 pts) Let $G = \langle a, b \rangle$ be the group whose Cayley graph is shown below, and let $N = \langle abab \rangle$, which is normal.

- (a) Find all left cosets of N. Write down each one, beside the Cayley graph above, in two ways: (i) as xN for some representative $x \in G$, and (ii) as a subset of G.
- (b) Construct a Cayley table, Cayley graph, and subgroup lattice of the quotient group G/N. Which familiar group is it isomorphic to?

- 2. (10 pts) Let H and K be subgroups of G, with $K \leq H \leq G$.
 - (a) The *index* of H in G, denoted [G:H], is defined as the
 - (b) Lagrange's thm (an eq'n involving [G:H]) says:
 - (c) State and prove the tower law (an equation relating [G:K], [G:H], and [H:K]).

3. (24 pts) A Cayley graph of a mystery group G of order 12 is shown below; let 1 (not e) denote the identity element.

- (a) Write the order of each element in the nodes of the blank Cayley graph on the right.
- (b) The subgroup $H = \langle a, b \rangle \cong$ _____, and $K = \langle d \rangle \cong$ _____.
- (c) The subgroup $\langle a, d \rangle$ has order , and is isomorphic to .
- (d) The subgroup $\langle b, d \rangle$ has order _____, and is isomorphic to _____.
- (e) The center of this group is Z(G) =_____. [Write it in terms of generator(s).]
- (f) Find all left cosets of $H = \langle a, b \rangle$. Then find all right cosets. Write your answers as subsets of G, or describe them in words (e.g., "the rows" or "the columns").

- (g) Find all left cosets of $K = \langle d \rangle$. Then find all right cosets. Write your answers as subsets of G, or describe them in words.
- (h) The normalizers are $N_G(H) = \langle \rangle$ and $N_G(K) = \langle \rangle$.
- (i) Find all conjugate subgroups to H and to K. Write each subgroup only once.

- (j) Is H normal? Is K normal?
- (k) There are exactly five groups of order 12: C_{12} , $C_6 \times C_2$, D_6 , A_4 , and Dic₆. Which one is isomorpic to G? You must justify your answer for full credit.

4. (16 pts) Fill in the blanks.

(a)	The smallest nontrivial group is
(b)	The cyclic group C_{20} has exactly subgroups.
(c)	A group has exactly two subgroups iff it is
(d)	The order of an element $g \in G$ is equal to the order of (the subgroup) of G.
(e)	The order of the permutation $(12)(13)$ in S_4 is
(f)	The centralizer of (12) in S_4 is $C_{S_4}((12)) = $
(g)	The normalizer of the center $Z(G)$ is
(h)	The element $(12)(34) \in S_4$ is conjugate to exactly permutations.
(i)	The dihedral group D_{18} (order 36) has element(s) of order 2 and of order 4.
(j)	The dicyclic group Dic_{18} (order 36) has element(s) of order 2 and of order 4.
(k)	A subgroup is normal iff its (a subgroup) is equal to
(l)	The group \mathbb{Z} has exactly finite subgroup(s).
(m)	$xHx^{-1} = yHy^{-1}$ iff x, y are in the same

5. (8 pts) Prove that every quotient G/H of an abelian group G is abelian.

6. (8 pts) The multiplicative group modulo 12 is the set

$$U_{12} = \{ k \in \mathbb{Z} \mid 1 \le k < 12, \ \gcd(12, k) = 1 \},\$$

where the binary operation is multiplication, modulo 12. Draw a Cayley table and Cayley graph of this group. Then determine which familiar group it is isomorphic to, and justify your answer.

7. (8 pts) Make a list of all abelian groups of order $48 = 2^4 \cdot 3$, up to isomorphism. Every such group should appear exactly once in your list.

- 8. (10 pts) Let G be a group, N a normal subgroup, and $G/N = \{gN \mid g \in G\}$, the set of left (or equivalently, right) cosets.
 - (a) Prove that the binary operation on G/N defined by

$$aN \cdot bN := abN$$

is well-defined. That is, it does not depend on the choice of coset representative.

(b) Prove that G/N is a group, using the binary operation defined above.

9. (6 pts) Determine whether the following statement is true or false:

"If $H \leq G$, then its normalizer $N_G(H)$ is normal in G."

If it's true, prove it. If it's false, give an explicit counterexample.