
1. Let G be the *semiabelian group* of order 16, defined by the presentation

$$SA_8 = \langle r, s \mid r^8 = s^2 = 1, srs = r^5 \rangle,$$

A Cayley diagram and subgroup lattice are shown below.

- (a) The subgroups $V = \langle r^4, s \rangle$, $H = \langle r^2 s \rangle$, $K = \langle r^2 \rangle$, and $N = \langle r^4 \rangle$ are all normal. Highlight their cosets on a fresh Cayley diagram by colors.
- (b) Construct a Cayley table for the quotient of G by each of these subgroups. Then draw a Cayley diagram for each, labeling the nodes with elements (i.e., cosets).
- (c) Let $N = \langle r^4 \rangle$. The shaded region below shows an order-4 cyclic subgroup of G/N, generated by the element rN, and how the union of these four cosets is the order-8 subgroup $\langle r \rangle$ of G. Construct analogous tables for the other five non-trivial proper subgroups of G/N, and then draw the subgroup lattice of G/N.

r^3N	$r^3 s N$		r^3	r^7	r^3s	r^7s		r^3	r^7	r^3s	r^7s
r^2N	$r^2 s N$		r^2	r^6	r^2s	r^6s		r^2	r^6	r^2s	r^6s
rN	rsN		r	r^5	rs	r^5s		r	r^5	rs	r^5s
N	sN		1	r^4	s	r^4s		1	r^4	s	r^4s
$\langle rN \rangle \leq G/N$, , , , , , , , , , , , , , , , , , ,	$\langle r \rangle / N \le G / N$					$\langle r \rangle \leq G$			

- (d) For each subgroup M/N from Part (c), determine what the quotient of G/N (order 8) by M/N (order 4 or 2) is isomorphic to. Justify your answer.
- (e) One step of Part (c) consisted of starting with G, taking the quotient by N, and then taking the subgroup generated by r²N and sN. Compare and contrast this to doing these steps in the reverse order. That is: start with G, first take the subgroup ⟨r², s⟩, and then take the quotient by N.
- (f) Repeat Part (c) for subgroups $V = \langle r^4, s \rangle$, $H = \langle r^2 s \rangle$, and $K = \langle r^2 \rangle$ of G. This time, include the trivial and proper subgroups for each.

- 2. Show that there is no embedding $\phi \colon \mathbb{Z}_n \hookrightarrow \mathbb{Z}$.
- 3. All of the following can be done by defining an explicit map, showing that it is a homomorphism, and a bijection.
 - (a) Show that $A \times B \cong B \times A$.
 - (b) Show that $xHx^{-1} \cong H$, for any $H \leq G$. Conclude that |xy| = |yx| for any $x, y \in G$.
 - (c) Show that $(\mathbb{Q}^*, \cdot) \cong (\mathbb{Q}^+, \cdot) \times C_2$. Recall that \mathbb{Q}^* and \mathbb{Q}^+ are the nonzero and positive rational numbers, respectively, and $C_2 = \{1, -1\}$.
- 4. Let $\phi: G \to H$ be a homomorphism, and $N \leq H$.
 - (i) Show that the set $\phi^{-1}(N) := \{g \in G \mid \phi(g) \in N\}$ is a subgroup of G.
 - (ii) Show that $\phi^{-1}(N)$ is a normal subgroup of G.
 - (iii) Show by example that if $M \leq G$, then $\phi(M)$ need not be a normal subgroup of H.
- 5. In this exercise, you will show that if A and B are normal subgroups and AB = G, then

$$G/(A \cap B) \cong (G/A) \times (G/B).$$

(a) Consider the following map:

$$\phi \colon AB \longrightarrow (G/A) \times (G/B), \qquad \phi(g) = (gA, gB).$$

Show that ϕ is a homomorphism.

- (b) Show that ϕ is surjective. That is, given any (g_1A, g_2B) , show that there is some $g = ab \in AB$ such that $\phi(g) = (g_1A, g_2B)$. [*Hint*: Try $g = a_2b_1$; show this works.]
- (c) Find $\text{Ker}(\phi)$ [you need to verify your answer is correct] and then apply the fundamental homomorphism theorem.