1. Consider the right action of $G=D_{6}=\langle r, f\rangle$ on following set of 31 "binary hexagons," where r rotates each one 60° counterclockwise, and f flips each one horizontally (i.e., across a vertical axis).

$$
\begin{aligned}
& \begin{array}{l}
1_{0}^{0} 0 \\
01_{1}^{1}
\end{array}, \frac{0^{0} 1}{1} 0_{0}^{1}, ~, 0^{1} 1
\end{aligned}
$$

(a) Draw the action graph.
(b) Construct the "fixed point table", which has a checkmark in row g and column s if $s . \phi(g)=s$.
(c) Next to each $s \in S$ on your action graph, write $\operatorname{stab}(s)$, the stabilizer subgroup, using its generators. Which subgroups of D_{6} don't appear?
(d) The fixator of each $g \in D_{6}$, denoted fix (g), can be read off of the the fixed point table. What is the average size $|\operatorname{fix}(g)|$?
(e) Find $\operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.
2. Suppose that G acts on S via the homomorphism $\phi: G \rightarrow \operatorname{Perm}(S)$.
(a) Show that $\operatorname{stab}(s)$ is a subgroup for all $s \in S$. Use the notational conventions that we have been using in lecture.
(b) Show that the stablizers of any two elements in the same orbit are conjugate - specifically, that $\operatorname{stab}(s . \phi(g))=g^{-1} \operatorname{stab}(s) g$ for all $g \in G$ and $s \in S$. This relationship is summarized by the following commutative diagram.

3. Suppose a group G of order 55 acts on a set S of size 14 . Let $s \in S$ be an arbitrary element.
(a) What are the possible sizes of the orbit of s ?
(b) What are the possible sizes of the stabilizer of s ?
(c) Show that this action must have a fixed point.
(d) What is the fewest number of fixed points that this action can have? Justify your answer.
4. Let $G=D_{6}=\langle r, f\rangle$ act on its set $S=\left\{H \leq D_{6}\right\}$ of subgroups by conjugation, i.e.,

$$
\phi: G \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=\text { the permutation that sends each } H \mapsto g^{-1} H g .
$$

A Cayley graph, cycle graph, and subgroup lattice for D_{6} are shown below.

(a) Construct the action graph, and superimpose it on the subgroup lattice.
(b) Construct the fixed point table.
(c) Find $\operatorname{stab}(H)$ for each subgroup $H \leq D_{6}$, and fix (g) for each $g \in D_{6}$.
(d) Find $\operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.
(e) Interpret $\operatorname{orb}(H), \operatorname{stab}(H),[G: \operatorname{stab}(H)], \operatorname{Fix}(\phi), \operatorname{Ker}(\phi), \operatorname{fix}(g)$, and the average size of \mid fix $(g) \mid$ in terms of familiar algebraic objects.
5. There is a Galois correspondence between conjugacy classes of subgroups of G and transitive actions of G, defined by collapsing the right cosets of H. An example of this correspondence for D_{6} is shown below.

Carry out this construction for $D_{6}=\langle s, t\rangle$, where where $s=f$ and $t=f r$. As was done above, label each conjugacy class with a subgroup that contains it, but use this new generating set.

