1. In this problem, we will explore the actions of the dicyclic group  $\text{Dic}_6$  and its automorphism group on itself and its subgroups by conjugation. A Cayley diagram, subgroup lattice, and conjugacy classes are shown below.



(a) The right action of  $Dic_6$  on itself by conjugation is defined by the homomorphism

 $\phi: \operatorname{Dic}_6 \longrightarrow \operatorname{Perm}(S), \qquad \phi(g) = \operatorname{the permutation that sends each } x \mapsto g^{-1}xg.$ 

Draw the action diagram and construct the fixed point table. Find stab(s) for each  $s \in S$ , fix(g) for each  $g \in G$ , as well as Ker( $\phi$ ) and Fix( $\phi$ ).

(b) The inner automorphism group

Inn(Dic<sub>6</sub>) 
$$\cong$$
 Dic<sub>6</sub> /Z(Dic<sub>6</sub>) = Dic<sub>6</sub> / $\langle r^3 \rangle \cong D_3$ 

also acts on Dic<sub>6</sub>. Construct the action diagram and fixed point table of this action and find stab(s), fix(g), Ker( $\phi$ ) and Fix( $\phi$ ). Then draw the subgroup lattice of Inn(Dic<sub>6</sub>) =  $\langle \varphi_r, \varphi_s \rangle$ , where  $\varphi_g \colon x \mapsto g^{-1}xg$ .

(c) The automorphism group of  $\text{Dic}_6$  is  $\text{Aut}(\text{Dic}_6) = \langle \varphi_r, \varphi_s, \omega \rangle$  acts on  $\text{Dic}_6$ , where  $\omega$  is the outer automorphism defined by

$$\omega \colon \operatorname{Dic}_6 \longrightarrow \operatorname{Dic}_6, \qquad \omega(r) = r, \quad \omega(s) = s^{-1} = r^3 s,$$

that "reverses" the blue arrows. Make a diagram showing how each automorphism permutes the elements of Dic<sub>6</sub>. Then construct the action diagram, fixed point table, and find stab(s), fix(g), Ker( $\phi$ ) and Fix( $\phi$ ).

- (d) The automorphism group  $\operatorname{Aut}(\operatorname{Dic}_6) = \langle \varphi_r, \varphi_s, \omega \rangle$  is isomorphic to  $D_6$ . Construct a Cayley diagram and subgroup lattice using these generators.
- (e) The group Aut(Dic<sub>6</sub>) also acts on the conjugacy classes of Dic<sub>6</sub>. Construct the action diagram, fixed point table, and find stab(s), fix(g),  $Ker(\phi)$  and  $Fix(\phi)$ .
- (f) The group  $Dic_6$  acts on its subgroups by conjugation, via the homomorphism

 $\phi: \operatorname{Dic}_6 \longrightarrow \operatorname{Perm}(S), \qquad \phi(g) = \text{the permutation that sends each } H \mapsto g^{-1} H g.$ 

Construct the action diagram superimposed on the subgroup lattice. Then construct the fixed point table and find  $\operatorname{stab}(s)$ ,  $\operatorname{fix}(g)$ ,  $\operatorname{Ker}(\phi)$  and  $\operatorname{Fix}(\phi)$ . 2. Carry out the following steps for the groups  $C_7 \rtimes C_3$  and  $C_9 \rtimes C_3$ , whose Cayley diagrams are shown below.



- (a) Let G act on its subgroups by conjugation. Draw the action diagram superimposed on the subgroup lattice. Construct the fixed point table, and find  $\operatorname{stab}(H)$  for each  $H \leq G$ ,  $\operatorname{Ker}(\phi)$  and  $\operatorname{Fix}(\phi)$ .
- (b) Let G act on the right cosets of  $H = \langle s \rangle$ , via the homomorphism

 $\phi: G \longrightarrow \operatorname{Perm}(S), \qquad \phi(g) = \operatorname{the permutation that sends each } Hx \mapsto Hxg.$ 

Construct the action diagram, fixed point table, and find  $\operatorname{stab}(Hx)$  for each right coset,  $\operatorname{Ker}(\phi)$  and  $\operatorname{Fix}(\phi)$ .

3. Loosely speaking, the upcoming Sylow theorems will us that (1) all *p*-subgroups come in a single "*p*-subgroup tower", (2) the "top" of these towers are a single conjugacy class, and (3) the size of this class is 1 mod *p*. This is illustrated below with the groups of order 12.



Using the LMFDB, construct analogous diagrams for the groups of order 18 and 20.

- 4. Let A, B be subgroups of a group G.
  - (a) Let  $A \times B$  act on the set  $AB \subseteq G$ , via  $(a, b)x = axb^{-1}$ , which need not be a subgroup of G. Find the orbit and the stabilizer of the identity element  $e = e \cdot e \in AB$ . Use this, with the orbit-stabilizer theorem, to derive a formula for the size of the set |AB|.
  - (b) For  $x \in G$ , define the (A, B)-double coset containing it to be the set

$$AxB := \{axb \mid a \in A, b \in B\}$$

Show that G is the disjoint union of its (A, B)-double cosets. [*Hint*: One way is to show that  $x \sim y$  iff  $x \in AyB$  is an equivalence relation. Another way is to show that if  $AxB \cap AyB \neq \emptyset$ , then AxB = AyB.]

- (c) Partition the dihedral group  $D_3$  into the (A, B)-double cosets of  $A = \langle f \rangle$  and  $B = \langle rf \rangle$ . Does anything about this surprise you?
- (d) Let A act on the set G/B of left cosets of B by left multiplication. Show that  $\operatorname{stab}(xB) = A \cap xBx^{-1}$ , and then use the orbit-stabilizer theorem to determine the size of  $\operatorname{orb}(xB)$ .
- (e) Show that AxB is the union of exactly  $[A : A \cap xBx^{-1}]$  left cosets of B in G.
- (f) Derive a formula for |AxB|.