1. In this problem, we will explore the actions of the dicyclic group Dic_{6} and its automorphism group on itself and its subgroups by conjugation. A Cayley diagram, subgroup lattice, and conjugacy classes are shown below.

$\langle 1\rangle$
(a) The right action of Dic_{6} on itself by conjugation is defined by the homomorphism $\phi: \operatorname{Dic}_{6} \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=$ the permutation that sends each $x \mapsto g^{-1} x g$.

Draw the action diagram and construct the fixed point table. Find stab (s) for each $s \in S$, fix (g) for each $g \in G$, as well as $\operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.
(b) The inner automorphism group

$$
\operatorname{Inn}\left(\operatorname{Dic}_{6}\right) \cong \operatorname{Dic}_{6} / Z\left(\operatorname{Dic}_{6}\right)=\operatorname{Dic}_{6} /\left\langle r^{3}\right\rangle \cong D_{3}
$$

also acts on Dic_{6}. Construct the action diagram and fixed point table of this action and find $\operatorname{stab}(s), \operatorname{fix}(g), \operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$. Then draw the subgroup lattice of $\operatorname{Inn}\left(\operatorname{Dic}_{6}\right)=\left\langle\varphi_{r}, \varphi_{s}\right\rangle$, where $\varphi_{g}: x \mapsto g^{-1} x g$.
(c) The automorphism group of Dic_{6} is $\operatorname{Aut}\left(\mathrm{Dic}_{6}\right)=\left\langle\varphi_{r}, \varphi_{s}, \omega\right\rangle$ acts on Dic_{6}, where ω is the outer automorphism defined by

$$
\omega: \operatorname{Dic}_{6} \longrightarrow \operatorname{Dic}_{6}, \quad \omega(r)=r, \quad \omega(s)=s^{-1}=r^{3} s,
$$

that "reverses" the blue arrows. Make a diagram showing how each automorphism permutes the elements of Dic_{6}. Then construct the action diagram, fixed point table, and find $\operatorname{stab}(s)$, fix $(g), \operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.
(d) The automorphism group $\operatorname{Aut}\left(\operatorname{Dic}_{6}\right)=\left\langle\varphi_{r}, \varphi_{s}, \omega\right\rangle$ is isomorphic to D_{6}. Construct a Cayley diagram and subgroup lattice using these generators.
(e) The group $\operatorname{Aut}\left(\mathrm{Dic}_{6}\right)$ also acts on the conjugacy classes of Dic_{6}. Construct the action diagram, fixed point table, and find $\operatorname{stab}(s), \operatorname{fix}(g), \operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.
(f) The group Dic_{6} acts on its subgroups by conjugation, via the homomorphism

$$
\phi: \operatorname{Dic}_{6} \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=\text { the permutation that sends each } H \mapsto g^{-1} H g .
$$

Construct the action diagram superimposed on the subgroup lattice. Then construct the fixed point table and find $\operatorname{stab}(s), \operatorname{fix}(g), \operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.
2. Carry out the following steps for the groups $C_{7} \rtimes C_{3}$ and $C_{9} \rtimes C_{3}$, whose Cayley diagrams are shown below.

(a) Let G act on its subgroups by conjugation. Draw the action diagram superimposed on the subgroup lattice. Construct the fixed point table, and find $\operatorname{stab}(H)$ for each $H \leq G, \operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.
(b) Let G act on the right cosets of $H=\langle s\rangle$, via the homomorphism

$$
\phi: G \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=\text { the permutation that sends each } H x \mapsto H x g .
$$

Construct the action diagram, fixed point table, and find $\operatorname{stab}(H x)$ for each right coset, $\operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.
3. Loosely speaking, the upcoming Sylow theorems will us that (1) all p-subgroups come in a single " p-subgroup tower", (2) the "top" of these towers are a single conjugacy class, and
(3) the size of this class is $1 \bmod p$. This is illustrated below with the groups of order 12.

Using the LMFDB, construct analogous diagrams for the groups of order 18 and 20.
4. Let A, B be subgroups of a group G.
(a) Let $A \times B$ act on the set $A B \subseteq G$, via $(a, b) x=a x b^{-1}$, which need not be a subgroup of G. Find the orbit and the stabilizer of the identity element $e=e \cdot e \in A B$. Use this, with the orbit-stabilizer theorem, to derive a formula for the size of the set $|A B|$.
(b) For $x \in G$, define the (A, B)-double coset containing it to be the set

$$
A x B:=\{a x b \mid a \in A, b \in B\} .
$$

Show that G is the disjoint union of its (A, B)-double cosets. [Hint: One way is to show that $x \sim y$ iff $x \in A y B$ is an equivalence relation. Another way is to show that if $A x B \cap A y B \neq \emptyset$, then $A x B=A y B$.]
(c) Partition the dihedral group D_{3} into the (A, B)-double cosets of $A=\langle f\rangle$ and $B=$ $\langle r f\rangle$. Does anything about this surprise you?
(d) Let A act on the set G / B of left cosets of B by left multiplication. Show that $\operatorname{stab}(x B)=A \cap x B x^{-1}$, and then use the orbit-stabilizer theorem to determine the size of orb $(x B)$.
(e) Show that $A x B$ is the union of exactly $\left[A: A \cap x B x^{-1}\right]$ left cosets of B in G.
(f) Derive a formula for $|A x B|$.

