Supplemental material for Visual Algebra (Math 4120), HW 3

$\# \mathbf{1 (a) : ~ C a y l e y ~ g r a p h ~ f o r ~ t h e ~ s y m m e t r i c ~ g r o u p ~} S_{4}=\langle(1234),(12)\rangle$ on a permutohedron. The nodes are labeled by permutations, written in cycle notation, as a product of disjoint cycles.

\#1(a): Cayley graph for the symmetric group $S_{4}=\langle(12),(13),(14)\rangle$ on the Nauru graph. The nodes labeled by permutations, written in cycle notation, as a product of disjoint cycles.

\#1(b): Cayley graph for the symmetric group $S_{4}=\langle(12),(13),(14)\rangle$ on the Nauru graph. The nodes labeled by with permutations of the word 1234, where ($i j$) swaps the $i^{\text {th }}$ and $j^{\text {th }}$ coordinates.

$\# \mathbf{1 (c) : ~ C a y l e y ~ g r a p h ~ f o r ~ t h e ~ s y m m e t r i c ~ g r o u p ~} S_{4}=\langle(12),(13),(14)\rangle$ on the Nauru graph. The nodes labeled with permutations of the word 1234, where ($i j$) swaps the numbers i and j.

\#2: Cayley graph for the symmetric group S_{4} on a truncated cube. The nodes are labeled by permutations, written in cycle notation, as a product of disjoint cycles.

\#2: Cayley graph for the symmetric group S_{4} on a rhombicuboctahedron. The nodes are labeled by permutations, written in cycle notation, as a product of disjoint cycles.

\#3: Cayley graph for the alternating group $A_{4}=\langle(123),(12)(34)\rangle$ on a truncated tetrahedron. The nodes are labeled by permutations, written in cycle notation, as a product of disjoint cycles.

\#3: Cayley graph for the alternating group $A_{4}=\langle(123),(234)\rangle$ on a cuboctahedron. The nodes are labeled by permutations, written in cycle notation, as a product of disjoint cycles.

\#4: Cayley graph of the group

$$
G=\left\langle a, b, c \mid a^{2}=b^{3}=c^{3}=a b c=1\right\rangle
$$

on the skeleton of the icosahedron, with nodes labeled by words from this generating set.

\#4: Cayley graph of the group

$$
G=\left\langle a, b, c \mid a^{2}=b^{3}=c^{3}=a b c=1\right\rangle
$$

on the skeleton of the icosahedron, with nodes labeled by the elements of the familiar group it is isomorphic to. Since it has order 12, it must be either $C_{12}=\langle r\rangle, C_{6} \times C_{2}=\langle(r, s)\rangle, D_{6}=\langle r, f\rangle, A_{4}=$ $\langle(123),(12)(34)\rangle=\langle(123)(234)\rangle$, or $\operatorname{Dic}_{6}=\langle r, s\rangle$.

