Supplemental material: Visual Algebra (Math 4120), HW 9

\#2(c): Subgroup lattice of the semidihedral group SD_{8}, grouped by conjugacy classes, with the $k^{\text {th }}$ commutator subgroups $G^{(k)}$ included, and sublattice of the quotients $G^{(k)} / G^{(k-1)}$ identified, along with its isomorphism type.

\#2(c): Subgroup lattice of the affine general linear group $G=\mathrm{AGL}_{1}\left(\mathbb{Z}_{5}\right)$, grouped by conjugacy classes, with the $k^{\text {th }}$ commutator subgroups $G^{(k)}$ included, and sublattice of the quotients $G^{(k)} / G^{(k-1)}$ identified, along with its isomorphism type.

$\# \mathbf{2 (c)}$: Subgroup lattice of the dicyclic group Dic $_{10}$, grouped by conjugacy classes, with the $k^{\text {th }}$ commutator subgroups $G^{(k)}$ included, and sublattice of the quotients $G^{(k)} / G^{(k-1)}$ identified, along with its isomorphism type.

$\# \mathbf{2 (c)}$: Subgroup lattice of the special linear group $G=\mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)$, grouped by conjugacy classes, with the $k^{\text {th }}$ commutator subgroups $G^{(k)}$ included, and sublattice of the quotients $G^{(k)} / G^{(k-1)}$ identified, along with its isomorphism type.

 nodes labeled by re-wired copies of the Cayley diagram of $D_{4}=\langle r, f\rangle$, and also denoted with the corresponding element from

$$
\operatorname{Aut}\left(D_{4}\right)=\left\{\operatorname{Id}, \varphi_{r}, \varphi_{f}, \varphi_{r f}, \omega, \varphi_{r} \omega, \varphi_{f} \omega, \varphi_{r f} \omega\right\}=\operatorname{Inn}\left(D_{4}\right) \cup \operatorname{Inn}\left(D_{4}\right) \omega
$$

$\# \mathbf{3}(\mathbf{a}, \mathbf{c}):$ Cayley diagram of the automorphism group $\operatorname{Aut}\left(D_{4}\right) \cong V_{4} \rtimes C_{2} \cong D_{4}$, with the nodes labeled by re-wired copies of the Cayley diagram of $D_{4}=\langle r, f\rangle$, and also denoted with the corresponding element from

$$
\operatorname{Aut}\left(D_{4}\right)=\left\{\operatorname{Id}, \varphi_{r}, \varphi_{f}, \varphi_{r f}, \omega, \varphi_{r} \omega, \varphi_{f} \omega, \varphi_{r f} \omega\right\}=\operatorname{Inn}\left(D_{4}\right) \cup \operatorname{Inn}\left(D_{4}\right) \omega
$$

$\# \mathbf{3}(\mathbf{b}, \mathbf{c})$: Cayley diagram of the automorphism group $\operatorname{Aut}\left(D_{4}\right) \cong V_{4} \rtimes C_{2} \cong D_{4}$, with the nodes labeled by re-wired copies of the Cayley diagram of $D_{4}=\langle r, f\rangle$, and also denoted with the corresponding element from

$$
\operatorname{Aut}\left(D_{4}\right)=\left\{\operatorname{Id}, \varphi_{r}, \varphi_{f}, \varphi_{r f}, \omega, \varphi_{r} \omega, \varphi_{f} \omega, \varphi_{r f} \omega\right\}=\operatorname{Inn}\left(D_{4}\right) \cup \operatorname{Inn}\left(D_{4}\right) \omega
$$

$\# \mathbf{3}(\mathbf{b}, \mathbf{c})$: Cayley diagram of the automorphism group $\operatorname{Aut}\left(D_{4}\right) \cong V_{4} \rtimes C_{2} \cong D_{4}$, with the nodes labeled by re-wired copies of the Cayley diagram of $D_{4}=\langle s, t\rangle$, and also denoted with the corresponding element from

$$
\operatorname{Aut}\left(D_{4}\right)=\left\{\operatorname{Id}, \varphi_{r}, \varphi_{f}, \varphi_{r f}, \omega, \varphi_{r} \omega, \varphi_{f} \omega, \varphi_{r f} \omega\right\}=\operatorname{Inn}\left(D_{4}\right) \cup \operatorname{Inn}\left(D_{4}\right) \omega
$$

\#4(i-ii): Both $D_{3} \times C_{2}$ and $D_{3} \times C_{2}$ are semidirect products, and each is defined by a "labeling map"

$$
\theta: C_{2} \longrightarrow \operatorname{Aut}\left(D_{3}\right)=\left\langle\alpha, \beta \mid \alpha^{3}=\beta^{2}=(\alpha \beta)^{2}=1\right\rangle \cong D_{3}
$$

$\mathrm{D}_{3} \times \mathrm{C}_{2}$

$\mathrm{D}_{3} \rtimes \mathrm{C}_{2}$

$\# 4(\mathbf{i i i}-\mathbf{i v})$: The semidirect product $A \rtimes B$ is defined by "labeling map" $\theta: B \longrightarrow \operatorname{Aut}(A)$. Here are $V_{4} \rtimes C_{3}$ and $C_{3} \rtimes V_{4}$ and $\operatorname{Aut}\left(V_{4}\right)=\langle\alpha, \beta\rangle \cong D_{3}$ and $\operatorname{Aut}\left(C_{3}\right)=\langle 1, \phi\rangle \cong C_{2}$.

