Chapter 4: Maps between groups

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120 \& 4130, Visual Algebra

Homomorphisms

Throughout this course, we've said that two groups are isomorphic if for some generating sets, they have Cayley graphs with the same structure.

This can be formalized by a "structure-preserving" function $\phi: G \rightarrow H$ between groups, called a homomorphism.

An isomorphism is simply a bijective homomorphism.

What we called a re-wiring when constructing semidirect products is an automorphism: an isomorphism $\phi: G \rightarrow G$.

The Greek roots "homo" and "morph" together mean "same shape."

The homomorphism $\phi: G \rightarrow H$ is an
■ embedding if ϕ is one-to-one: " G is a subgroup of H."

- quotient map if ϕ is onto: " H is a quotient of G."

We'll see that even if ϕ is neither, it can be decomposed as a composition $\phi=\pi \circ \iota$ of an embedding with a quotient.

Preview: embeddings vs. quotients
The difference between embeddings and quotient maps can be seen in the subgroup lattice:

In one of these groups, D_{5} is subgroup. In the other, it arises as a quotient.

This, and much more, will be consequences of the celebrated isomorphism theorems.

Preview: subgroups, quotients, and subquotients

Often, we'll see familiar subgroup lattices in the middle of a larger lattice.
These are called subquotients.

The isomorphism theorems relates the structure of a group to that of its quotients and subquotients.

A example embedding

When we say $\mathbb{Z}_{3} \leq D_{3}$, we really mean that the structure of \mathbb{Z}_{3} appears in D_{3}.
This can be formalized by a map $\phi: \mathbb{Z}_{3} \rightarrow D_{3}$, defined by $\phi: n \mapsto r^{n}$.

In general, a homomorphism is a function $\phi: G \rightarrow H$ with some extra properties.
We will use standard function terminology:

- the group G is the domain
- the group H is the codomain
- the image is what is often called the range:

$$
\operatorname{Im}(\phi)=\phi(G)=\{\phi(g) \mid g \in G\} .
$$

The formal definition

Definition

A homomorphism is a function $\phi: G \rightarrow H$ between two groups satisfying

$$
\phi(a b)=\phi(a) \phi(b), \quad \text { for all } a, b \in G .
$$

Note that the operation $a \cdot b$ is in the domain while $\phi(a) \cdot \phi(b)$ in the codomain.

In this example, the homomorphism condition is $\phi(a+b)=\phi(a) \cdot \phi(b)$. (Why?)

Not only is there a bijective correspondence between the elements in \mathbb{Z}_{3} and those in the subgroup $\langle r\rangle$ of D_{3}, but the relationship between the corresponding nodes is the same.

Homomorphisms

Remark

Not every function between groups is a homomorphism! The condition $\phi(a b)=\phi(a) \phi(b)$ means that the map ϕ preserves the structure of G.

The $\phi(a b)=\phi(a) \phi(b)$ condition has visual interpretations on the level of Cayley graphs and Cayley tables.

Note that in the Cayley graphs, b and $\phi(b)$ are paths; they need not just be edges.

An example

Consider the function ϕ that reduces an integer modulo 5:

$$
\phi: \mathbb{Z} \longrightarrow \mathbb{Z}_{5}, \quad \phi(n)=n \quad(\bmod 5)
$$

Since the group operation is additive, the "homomorphism property" becomes

$$
\phi(a+b)=\phi(a)+\phi(b) .
$$

In plain English, this just says that one can "first add and then reduce modulo 5," OR "first reduce modulo 5 and then add."

Homomorphisms and generators

Remark

If we know where a homomorphism maps the generators of G, we can determine where it maps all elements of G.

For example, if $\phi: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{6}$ is a homomorphism with $\phi(1)=4$, we can deduce:

$$
\begin{aligned}
& \phi(2)=\phi(1+1)=\phi(1)+\phi(1)=4+4=2 \\
& \phi(0)=\phi(1+2)=\phi(1)+\phi(2)=4+2=0 .
\end{aligned}
$$

Example

Suppose that $G=\langle a, b\rangle$, and $\phi: G \rightarrow H$, and we know $\phi(a)$ and $\phi(b)$. We can find the image of any $g \in G$. For example, for $g=a^{3} b^{2} a b$,

$$
\phi(g)=\phi(a a a b b a b)=\phi(a) \phi(a) \phi(a) \phi(b) \phi(b) \phi(a) \phi(b) .
$$

Note that if $k \in \mathbb{N}$, then $\phi\left(a^{k}\right)=\phi(a)^{k}$. What do you think $\phi\left(a^{-1}\right)$ is?

Two basic properties of homomorphisms

Proposition

For any homomorphism $\phi: G \rightarrow H$:
(i) $\phi\left(1_{G}\right)=1_{H}$ " ϕ sends the identity to the identity"
(ii) $\phi\left(g^{-1}\right)=\phi(g)^{-1} \quad$ " ϕ sends inverses to inverses"

Proof

(i) Pick any $g \in G$. Now, $\phi(g) \in H$; observe that

$$
\phi\left(1_{G}\right) \phi(g)=\phi\left(1_{G} \cdot g\right)=\phi(g)=1_{H} \cdot \phi(g) .
$$

Therefore, $\phi\left(1_{G}\right)=1_{H}$.
(ii) Take any $g \in G$. Observe that

$$
\phi(g) \phi\left(g^{-1}\right)=\phi\left(g g^{-1}\right)=\phi\left(1_{G}\right)=1_{H} .
$$

Since $\phi(g) \phi\left(g^{-1}\right)=1_{H}$, it follows immediately that $\phi\left(g^{-1}\right)=\phi(g)^{-1}$.

A word of caution

Just because a homomorphism $\phi: G \rightarrow H$ is determined by the image of its generators does not mean that every such image will work.

For example, let's try to define a homomorphism $\phi: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{4}$ by $\phi(1)=1$. Then we get

$$
\begin{aligned}
& \phi(2)=\phi(1+1)=\phi(1)+\phi(1)=2 \\
& \phi(0)=\phi(1+1+1)=\phi(1)+\phi(1)+\phi(1)=3 \neq 0 .
\end{aligned}
$$

This is impossible, because $\phi(0)$ must be $0 \in \mathbb{Z}_{4}$.
That's not to say that there isn't a homomorphism $\phi: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{4}$; note that there is always the trivial homomorphism between two groups:

$$
\phi: G \longrightarrow H, \quad \phi(g)=1_{H} \quad \text { for all } g \in G
$$

Exercise

Show that there is no embedding $\phi: \mathbb{Z}_{n} \hookrightarrow \mathbb{Z}$, for $n \geq 2$. That is, any such homomorphism must satisfy $\phi(1)=0$.

Types of homomorphisms

Consider the following homomorphism $\theta: \mathbb{Z}_{3} \rightarrow C_{6}$, defined by $\theta(n)=r^{2 n}$:

Note that $\theta(a+b)=\theta(a) \theta(b)$. The red arrow in \mathbb{Z}_{3} gets mapped to the 2-step path in C_{6}.
A homomorphism $\phi: G \rightarrow H$ that is one-to-one or "injective" is an embedding: the group G "embeds" into H as a subgroup. Optional: write $\phi: G \hookrightarrow H$.

If $\phi(G)=H$, then ϕ is onto, or surjective. We call it a quotient. Optional: $\phi: G \rightarrow H$.

Definition

A homomorphism that is both injective and surjective is an isomorphism.
An automorphism is an isomorphism from a group to itself.

An example that is neither an embedding nor quotient
Consider the homomorphism $\phi: Q_{8} \rightarrow A_{4}$ defined by

$$
\phi(i)=(12)(34), \quad \phi(j)=(13)(24)
$$

Using the property of homomorphisms,

$$
\begin{gathered}
\phi(k)=\phi(i j)=\phi(i) \phi(j)=(12)(34) \cdot(13)(24)=(14)(23), \\
\phi(-1)=\phi\left(i^{2}\right)=\phi(i)^{2}=((12)(34))^{2}=e,
\end{gathered}
$$

and $\phi(-g)=\phi(g)$ for $g=i, j, k$.

An example of an isomorphism

We have already seen that D_{3} is isomorphic to S_{3}.
This means that there's a bijective correspondence $f: D_{3} \rightarrow S_{3}$.
But not just any bijection will do. Intuitively,

- (123) and (132) should be the rotations
- (12), (13), and (23) should be the reflections
- The identity permutation must be the identity symmetry.

It is easy to verify that the following is an isomorphism:

$$
\phi: D_{3} \longrightarrow S_{3}, \quad \phi(r)=(123), \quad \phi(f)=(23)
$$

However, there are other isomorphisms between these groups.

Group representations

We've already seen how to represent groups as collections of matrices.
Formally, a (faithful) representation of a group G is a (one-to-one) homomorphism

$$
\phi: G \longrightarrow \mathrm{GL}_{n}(K)
$$

for some field K (e.g., $\mathbb{R}, \mathbb{C}, \mathbb{Z}_{p}$, etc.)

For example, the following 8 matrices form group under multiplication, isomorphic to Q_{8}.

$$
\left\{ \pm l, \quad \pm\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad \pm\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right], \quad \pm\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\right\} .
$$

Formally, we have an embedding $\phi: Q_{8} \hookrightarrow \mathrm{GL}_{4}(\mathbb{R})$ where

$$
\phi(i)=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad \phi(j)=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right], \quad \phi(k)=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

Notice how we can use the homomorphism property to find the image of the other elements.

Kernels and quotient maps

If $\phi: G \rightarrow H$ is onto, it is a quotient map.
We'll see how these arise from our quotient process.

Definition

The kernel of a homomorphism $\phi: G \rightarrow H$ is the set

$$
\operatorname{Ker}(\phi):=\phi^{-1}\left(1_{H}\right)=\left\{k \in G \mid \phi(k)=1_{H}\right\} .
$$

The kernel is the "group theoretic" analogue of the nullspace of a matrix.
Another way to define the kernel is as the preimage of the identity.

Definition

If $\phi: G \rightarrow H$ is a homomorphism and $h \in \operatorname{Im}(\phi)$, define the preimage of h to be the set

$$
\phi^{-1}(h):=\{g \in G \mid \phi(g)=h\} .
$$

Note that ϕ^{-1} is generally not a function!
Let's do some examples, and observe what the kernels and preimages are.

An example of a quotient

Recall that $C_{2}=\left\{e^{0 \pi i}, e^{1 \pi i}\right\}=\{1,-1\}$. Consider the following quotient map:

$$
\phi: D_{4} \longrightarrow C_{2}, \quad \text { defined by } \phi(r)=1 \text { and } \phi(f)=-1 .
$$

Note that

$$
\phi\left(r^{k}\right)=\phi(r)^{k}=1^{k}=1, \quad \phi\left(r^{k} f\right)=\phi\left(r^{k}\right) \phi(f)=\phi(r)^{k} \phi(f)=1^{k}(-1)=-1 .
$$

	1	r	r^{2}	r^{3}	f	$r f$	$r^{2} f$	$r^{3} f$
1	1	r	r^{2}	r^{3}	f	$r f$	$r^{2} f$	$r^{3} f$
r	r	r^{2}	r^{3}	1	$r f$	$r^{2} f$	$r^{3} f$	f
r^{2}	r^{2}	r^{3}	1	r	$r^{2} f$	$r^{3} f$	f	$r f$
r^{3}	r^{3}	1	r	r^{2}	$r^{3} f$	f	$r f$	$r^{2} f$
f	f	$r^{3} f$	$r^{2} f$	$r f$	1	r^{3}	r^{2}	r
$r f$	$r f$	f	$r^{3} f$	$r^{2} f$	r	1	r^{3}	r^{2}
$r^{2} f$	$r^{2} f$	$r f$	f	$r^{3} f$	r^{2}	r	1	r^{3}
$r^{3} f$	$r^{3} f$	$r^{2} f$	$r f$	f	r^{3}	r^{2}	r	1

$\operatorname{Ker}(\phi)=\phi^{-1}(1)=\langle r\rangle \quad($ "rotations" $)$,

	1	r	r^{2}	r^{3}	f	$r f$	$r^{2} f$	$r^{3} f$
1	1	r	r^{2}	r^{3}	f	17	$r^{2} f$	$r^{3} f$
r	r			1	If	$r^{2} f$	$t^{3} f$	
r^{2}	r^{2}			r	$r^{2} f$	$r^{3} f$		If
r^{3}	r^{3}	1	r	r^{2}	$r^{3} f$	f	If	$r^{2} f$
f	f	$r^{3} f$	$r^{2} f$	rf	1	r^{3}	r^{2}	r
rf	17			$r^{2} f$	r			r^{2}
$r^{2} f$	r	rf		$r^{3} f$	r^{2}			r^{3}
$r^{3} f$	r^{3}	$r^{2} f$	IT	f	r^{3}	r^{2}	r	1

$$
\phi^{-1}(-1)=f\langle r\rangle \quad \text { ("reflections"). }
$$

An example of a quotient

Define the homomorphism

$$
\phi: Q_{8} \longrightarrow V_{4}, \quad \phi(i)=v, \quad \phi(j)=h .
$$

Since $Q_{8}=\langle i, j\rangle$, we can determine where ϕ sends the remaining elements:

$$
\begin{aligned}
& \phi(1)=e \\
& \phi(-1)=\phi\left(i^{2}\right)=\phi(i)^{2}=v^{2}=e \\
& \phi(k)=\phi(i j)=\phi(i) \phi(j)=v h=r \\
& \phi(-k)=\phi(j i)=\phi(j) \phi(i)=h v=r \\
& \phi(-i)=\phi(-1) \phi(i)=e v=v \\
& \phi(-j)=\phi(-1) \phi(j)=e h=h
\end{aligned}
$$

Note that the kernel is the normal subgroup $N:=\operatorname{Ker}(\phi)=\phi^{-1}(e)=\langle-1\rangle$, and all preimages are cosets:

$$
\phi^{-1}(v)=i N, \quad \phi^{-1}(h)=j N, \quad \phi^{-1}(r)=k N .
$$

Every homomorphism image is a quotient

The following is one of the central results in group theory.

Fundamental homomorphism theorem (FHT)

If $\phi: G \rightarrow H$ is a homomorphism, then $\operatorname{Im}(\phi) \cong G / \operatorname{Ker}(\phi)$.

The FHT says that every homomorphism can be decomposed into two steps: (i) quotient out by the kernel, and then (ii) relabel the nodes via ϕ.

Visualizing the FHT via Cayley graphs

Visualizing the FHT via Cayley tables

Here's another way to think about the homomorphism

$$
\phi: Q_{8} \longrightarrow V_{4}, \quad \phi(i)=v, \quad \phi(j)=h
$$

as the composition of:

- a quotient by $N=\operatorname{Ker}(\phi)=\langle-1\rangle=\{ \pm 1\}$,
- a relabeling map $\iota: Q_{8} / N \rightarrow V_{4}$.

FHT preliminaries

Proposition

The kernel of any homomorphism $\phi: G \rightarrow H$, is a normal subgroup.

Proof

Let $N:=\operatorname{Ker}(\phi)$. First, we'll show that it's a subgroup. Take any $a, b \in N$.
Identity: $\phi(e)=e$.
Closure: $\phi(a b)=\phi(a) \phi(b)=e \cdot e=e$.
Inverse: $\phi\left(a^{-1}\right)=\phi(a)^{-1}=e^{-1}=e$.
Now we'll show it's normal. Take any $n \in N$. We'll show that $g n g^{-1} \in N$ for all $g \in G$.
By the homomorphism property,

$$
\phi\left(g n g^{-1}\right)=\phi(g) \phi(n) \phi\left(g^{-1}\right)=\phi(g) \cdot e \cdot \phi(g)^{-1}=e
$$

Therefore, gng $^{-1} \in \operatorname{Ker}(\phi)$.

Key observation

Given any homomorphism $\phi: G \rightarrow H$, we can always form the quotient group $G / \operatorname{Ker}(\phi)$.

FHT preliminaries

Proposition

Let $\phi: G \rightarrow H$ be a homomorphism. Then each preimage $\phi^{-1}(h)$ is a coset of $\operatorname{Ker}(\phi)$.

Proof

Let $N=\operatorname{Ker}(\phi)$ and take any $g \in \phi^{-1}(h)$. (This means $\phi(g)=h$.)
We claim that $\phi^{-1}(h)=g N$. We need to verify both \subseteq and \supseteq.
" \subseteq ": Take $a \in \phi^{-1}(h)$, i.e., $\phi(a)=h$. We need to show that $a \in g N$.
From basic properties of cosets, we have the equivalences

$$
a \in g N \quad \Longleftrightarrow \quad a N=g N \quad \Longleftrightarrow \quad g^{-1} a N=N \quad \Longleftrightarrow \quad g^{-1} a \in N
$$

This last condition is true because

$$
\phi\left(g^{-1} a\right)=\phi(g)^{-1} \phi(a)=h^{-1} \cdot h=1_{H} .
$$

" \supseteq ": Pick any $g n \in g N$. This is in $\phi^{-1}(h)$ because

$$
\phi(g n)=\phi(g) \phi(n)=h \cdot 1_{H}=h .
$$

Proof of the FHT

Fundamental homomorphism theorem

If $\phi: G \rightarrow H$ is a homomorphism, then $\operatorname{Im}(\phi) \cong G / \operatorname{Ker}(\phi)$.

Proof

We'll construct an explicit map $\iota: G / \operatorname{Ker}(\phi) \longrightarrow \operatorname{Im}(\phi)$ and prove that it's an isomorphism. Let $N=\operatorname{Ker}(\phi)$, and recall that $G / N=\{g N \mid g \in G\}$. Define

$$
\iota: G / N \longrightarrow \operatorname{Im}(\phi), \quad \iota: g N \longmapsto \phi(g) .
$$

- Show ι is well-defined: We must show that if $a N=b N$, then $\iota(a N)=\iota(b N)$.

Suppose $a N=b N$. We have

$$
a N=b N \quad \Longrightarrow \quad b^{-1} a N=N \quad \Longrightarrow \quad b^{-1} a \in N
$$

By definition of $b^{-1} a \in \operatorname{Ker}(\phi)$,

$$
1_{H}=\phi\left(b^{-1} a\right)=\phi\left(b^{-1}\right) \phi(a)=\phi(b)^{-1} \phi(a) \quad \Longrightarrow \quad \phi(a)=\phi(b) .
$$

By definition of $\iota: \quad \iota(a N)=\phi(a)=\phi(b)=\iota(b N)$.

Proof of FHT (cont.) [Recall: $\quad \iota: G / N \rightarrow \operatorname{Im}(\phi), \quad \iota: g N \mapsto \phi(g)]$

Proof (cont.)

- Show ι is a homomorphism: We must show that $\iota(a N \cdot b N)=\iota(a N) \iota(b N)$.

$$
\begin{aligned}
\iota(a N \cdot b N) & =\iota(a b N) & & (a N \cdot b N:=a b N) \\
& =\phi(a b) & & (\text { definition of } \iota) \\
& =\phi(a) \phi(b) & & (\phi \text { is a homomorphism) } \\
& =\iota(a N) \iota(b N) & & (\text { definition of } \iota)
\end{aligned}
$$

Thus, ι is a homomorphism.

- Show \llcorner is surjective (onto):

Take any element in the codomain (here, $\operatorname{Im}(\phi)$). We need to find an element in the domain (here, G / N) that gets mapped to it by ι.

Pick any $\phi(a) \in \operatorname{Im}(\phi)$. By defintion, $\iota(a N)=\phi(a)$, hence ι is surjective.

Proof of FHT (cont.) [Recall: $\quad \iota: G / N \rightarrow \operatorname{Im}(\phi), \quad \iota: g N \mapsto \phi(g)]$

Proof (cont.)

- Show ι is injective (1-1): We must show that $\iota(a N)=\iota(b N)$ implies $a N=b N$.

Suppose that $\iota(a N)=\iota(b N)$. Then

$$
\begin{aligned}
\iota(a N)=\iota(b N) & \Longrightarrow \phi(a)=\phi(b) & & \text { (by definition) } \\
& \Longrightarrow \phi(b)^{-1} \phi(a)=1_{H} & & \\
& \Longrightarrow \phi\left(b^{-1} a\right)=1_{H} & & \text { (} \phi \text { is a homom.) } \\
& \Longrightarrow b^{-1} a \in N & & \text { (definition of } \operatorname{Ker}(\phi)) \\
& \Longrightarrow b^{-1} a N=N & & (a H=H \Leftrightarrow a \in H) \\
& \Longrightarrow a N=b N & &
\end{aligned}
$$

Thus, ι is injective.

In summary, since $\iota: G / N \rightarrow \operatorname{Im}(\phi)$ is a well-defined homomorphism that is injective (1-1) and surjective (onto), it is an isomorphism.

Therefore, $G / N \cong \operatorname{Im}(\phi)$, and the FHT is proven.

Consequences of the FHT

Corollary

If $\phi: G \rightarrow H$ is a homomorphism, then $\operatorname{Im} \phi \leq H$.

The two "extreme cases"

- If $\phi: G \hookrightarrow H$ is an embedding, then $\operatorname{Ker}(\phi)=\left\{1_{G}\right\}$. The FHT says that

$$
\operatorname{Im}(\phi) \cong G /\left\{1_{G}\right\} \cong G
$$

- If $\phi: G \rightarrow H$ is the trivial $\operatorname{map} \phi(g)=1_{H}$ for all $h \in G$, then $\operatorname{Ker}(\phi)=G$. The FHT says that

$$
\left\{1_{H}\right\}=\operatorname{Im}(\phi) \cong G / G
$$

Let's use the FHT to determine all homomorphisms $\phi: C_{4} \rightarrow C_{3}$.

- By the $\mathrm{FHT}, G / \operatorname{Ker} \phi \cong \operatorname{Im} \phi \leq C_{3}$, and so $|\operatorname{Im} \phi|=1$ or 3 .
- Since $\operatorname{Ker} \phi \leq C_{4}$, Lagrange's Theorem also tells us that $|\operatorname{Ker} \phi| \in\{1,2,4\}$, and hence $|\operatorname{Im} \phi|=|G / \operatorname{Ker} \phi| \in\{1,2,4\}$.

Thus, $|\operatorname{Im} \phi|=1$, and so the only homomorphism $\phi: C_{4} \rightarrow C_{3}$ is the trivial one.

Consequences of the FHT

Let's do a more complicated example: find all homomorphisms $\phi: \mathbb{Z}_{44} \rightarrow \mathbb{Z}_{16}$.
By the FHT,

$$
\mathbb{Z}_{44} / \operatorname{Ker}(\phi) \cong \operatorname{Im}(\phi) \leq \mathbb{Z}_{16} .
$$

This means that $44 /|\operatorname{Ker}(\phi)|$ must be $1,2,4,8$, or 16 .
Also, $|\operatorname{Ker}(\phi)|$ must divide 44 . We are left with three cases: $|\operatorname{Ker}(\phi)|=44,22$, or 11.

Reminder

For each $d \mid n$, the group \mathbb{Z}_{n} has a unique subgroup of order d, which is $\langle n / d\rangle$.

- Case 1: $|\operatorname{Ker}(\phi)|=44$, which forces $|\operatorname{Im}(\phi)|=1$, and so $\phi(1)=0$ is the trivial homomorphism.

■ Case 2: $|\operatorname{Ker}(\phi)|=22$. By the FHT, $|\operatorname{Im}(\phi)|=2$, which means $\operatorname{Im}(\phi)=\{0,8\}$, and so $\phi(1)=8$.

- Case 3: $|\operatorname{Ker}(\phi)|=11$. By the FHT, $|\operatorname{Im}(\phi)|=4$, which means $\operatorname{Im}(\phi)=\{0,4,8,12\}$.

There are two subcases: $\phi(1)=4$ or $\phi(1)=12$.

What does "well-defined" really mean?

Recall that we've seen the term "well-defined" arise in different contexts:

- a well-defined binary operation on a set G / N of cosets,
- a well-defined function $\iota: G / N \rightarrow H$ from a set (group) of cosets.

In both of these cases, well-defined means that:
"our definition doesn't depend on our choice of coset representative."
Formally:

- If $N \unlhd G$, then $a N \cdot b N:=a b N$ is a well-defined binary operation on the set G / N of cosets, because

$$
\text { if } a_{1} N=a_{2} N \text { and } b_{1} N=b_{2} N \text {, then } a_{1} b_{1} N=a_{2} b_{2} N \text {. }
$$

- The map $\iota: G / N \rightarrow H$, where $\iota(a N)=\phi(a)$, is a well-defined homomorphism, meaning that

$$
\text { if } a N=b N \text {, then } \iota(a N)=\iota(b N) \text { (that is, } \phi(a)=\phi(b)) \text { holds. }
$$

Remark

Whenever we define a map and the domain is a quotient, we must show it's well-defined.

What does "well-defined" really mean?

In some sense, well-defined and injective are "dual" concepts:

- f is well-defined if the same input cannot map to different outputs

■ f is injective if different inputs cannot map to the same output.

not allowed if well-defined

Let's revisit the proof of the FHT, and the map

$$
\iota: G / N \rightarrow H, \quad \iota(a N)=\phi(a), \quad \text { where } N=\operatorname{Ker}(\phi)
$$

Showing ι is well-defined is done as follows:

$$
a N=b N \Rightarrow b^{-1} a N=N \Rightarrow b^{-1} a \in N \Rightarrow \phi\left(b^{-1} a\right)=1 \Rightarrow \phi(a)=\phi(b) \Rightarrow \iota(a N)=\iota(b N) .
$$

Reversing each \Rightarrow shows ι is 1 -to- 1 .

How to show two groups are isomorphic
The standard way to show $G \cong H$ is to construct an isomorphism $\phi: G \rightarrow H$.
When the domain is a quotient, there is another method, due to the FHT.

Useful technique

Suppose we want to show that $G / N \cong H$. There are two approaches:
(i) Define a $\operatorname{map} \phi: G / N \rightarrow H$ and prove that it is well-defined, a homomorphism, and a bijection.
(ii) Define a map $\phi: G \rightarrow H$ and prove that it is a homomorphism, a surjection (onto), and that $\operatorname{Ker} \phi=N$.

Usually, Method (ii) is easier. Showing well-definedness and injectivity can be tricky.
For example, Method (ii) works quite well in showing the following:

- $\mathbb{Z} /\langle n\rangle \cong \mathbb{Z}_{n} ;$
- $\mathbb{Q}^{*} /\langle-1\rangle \cong \mathbb{Q}^{+}$;
- $A B / B \cong A /(A \cap B)$
- $G /(A \cap B) \cong(G / A) \times(G / B) \quad$ (if $G=A B)$.

A picture of the isomorphism $\iota: \mathbb{Z} /\langle 12\rangle \longrightarrow \mathbb{Z}_{12}$

The Isomorphism Theorems

The fundamental homomorphism theorem (FHT) is the first of four basic theorems about homomorphisms and their structure.

These are commonly called "The Isomorphism Theorems."
■ Fundamental homomorphism theorem: "All homomorphic images are quotients"

- Correspondence theorem: Characterizes "subgroups of quotients"
- Fraction theorem: Characterizes "quotients of quotients"
- Diamond theorem: "Duality of subquotients."

These all have analogues for other algebraic structures, e.g., rings, vector spaces, modules, Lie algebras.

All of these theorems can look messy and unmotivated algebraically.

However, they all have beautiful visual interpretations, especially involving subgroup lattices.

The correspondence theorem: subgroups of quotients

Given $N \unlhd G$, the quotient G / N has a group structure, via $a N \cdot b N=a b N$.
Moreover, by the FHT theorem, every homomorphism image is a quotient.

Natural question

What are the subgroups of a quotient?

Fortunately, this has a simple answer that is easy to remember.

Correspondence theorem (informal)

The subgroups of the quotient G / N are quotients of the subgroups $H \leq G$ that contain N.
Moreover, "most properties" of $H / N \leq G / N$ are inherited from $H \leq G$.

This is best understood by interpreting the subgroup lattices of G and G / N.
Let's do some examples for intuition, and then state the correspondence theorem formally.

The correspondence theorem: subgroups of quotients

Compare $G=\operatorname{Dic}_{6}$ with the quotient by $N=\left\langle r^{3}\right\rangle$.

We know the subgroups structure of $G / N=\left\{N, r N, r^{2} N, s N, r s N, r^{2} s N\right\} \cong D_{3}$.
" The subgroups of the quotient G / N are the quotients of the subgroups that contain N."
"shoeboxes; lids on"

r^{2}	r^{5}	$r^{2} s$	$r^{5} s$
r	r^{4}	$r s$	$r^{4} s$
1	r^{3}	s	$r^{3} s$

$\langle r\rangle \leq G$
"shoeboxes; lids off"

r^{2}	r^{5}	$r^{2} s$	$r^{5} s$
r	r^{4}	$r s$	$r^{4} s$
1	r^{3}	s	$r^{3} s$

$\langle r\rangle / N \leq G / N$
"shoes out of the box"

$r^{2} N$	$r^{2} s N$
$r N$	$r s N$
N	$s N$

$\langle r N\rangle \leq G / N$

The correspondence theorem: subgroups of quotients

Here is the subgroup lattice of $G=\mathrm{Dic}_{6}$, and of the quotient G / N, where $N=\left\langle r^{3}\right\rangle$.

"The subgroups of the quotient G/N are the quotients of the subgroups that contain N."
"shoes out of the box"

r^{2}	r^{5}	$r^{2} s$	$r^{5} s$
r	r^{4}	$r s$	$r^{4} s$
1	r^{3}	s	$r^{3} s$

$\langle s\rangle \leq G$
"shoeboxes; lids off"

r^{2}	r^{5}	$r^{2} s$	$r^{5} s$
r	r^{4}	$r s$	$r^{4} s$
1	r^{3}	s	$r^{3} s$

$\langle s\rangle / N \leq G / N$
"shoeboxes; lids on"

$r^{2} N$	$r^{2} s N$		
$r N$	$r s N$		
N	$s N$	\quad	$\langle s N\rangle \leq G / N$
:---:			

The correspondence theorem: subgroups of quotients

Correspondence theorem (informally)

There is a bijection between subgroups of G / N and subgroups of G that contain N.
"Everything that we want to be true" about the subgroup lattice of G / N is inherited from the subgroup lattice of G.

Most of these can be summarized as:
"The \qquad of the quotient is just the quotient of the \qquad "

Correspondence theorem (formally)

Let $N \leq H \leq G$ and $N \leq K \leq G$ be chains of subgroups and $N \unlhd G$. Then

1. Subgroups of the quotient G / N are quotients of the subgroup $H \leq G$ that contain N.
2. $H / N \unlhd G / N$ if and only if $H \unlhd G$
3. $[G / N: H / N]=[G: H]$
4. $H / N \cap K / N=(H \cap K) / N$
5. $\langle H / N, K / N\rangle=\langle H, K\rangle / N$
6. H / N is conjugate to K / N in G / N iff H is conjugate to K in G.

The correspondence theorem: subgroups of quotients

All parts of the correspondence theorem have nice subgroup lattice interpretations.
We've already interpreted the the first part.
Here's what the next four parts say.

The correspondence theorem: subgroups of quotients
The last part says that we can characterize the conjugacy classes of G / N from those of G.

Let's apply that to find the conjugacy classes of $C_{4} \rtimes C_{4}$ by inspection alone.

The correspondence theorem: subgroups of quotients
Let's prove the first (main) part of the correspondence theorem.

Correspondence theorem (first part)

The subgroups of the quotient G / N are quotients of the subgroup $H \leq G$ that contain N.

Proof

Let S be a subgroup of G / N. Then S is a collection of cosets, i.e.,

$$
S=\{h N \mid h \in H\}
$$

for some subset $H \subseteq G$. We just need to show that H is a subgroup.
We'll use the one-step subgroup test: take $h_{1} N, h_{2} N \in S$. Then S must also contain

$$
\begin{equation*}
\left(h_{1} N\right)\left(h_{2} N\right)^{-1}=\left(h_{1} N\right)\left(h_{2}^{-1} N\right)=\left(h_{1} h_{2}^{-1}\right) N . \tag{1}
\end{equation*}
$$

That is, $h_{1} h_{2}^{-1} \in H$, which means that H is a subgroup.
Conversely, suppose that $N \leq H \leq G$. The one-step subgroup test shows that $H / N \leq G / N$; see Eq. (1).

The other parts are straightforward and will be left as exercises.

The "subgroup" and "quotient" operations commute

Key idea

The quotient of a subgroup is just the subgroup of the quotient.

Example: Consider the group $G=\mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)$.

subgroup $H \cong \mathbf{Q}_{8}$

$\mathrm{H} / \mathrm{N} \cong \mathrm{V}_{4}$

"quotient of the subgroup"

The "subgroup" and "quotient" operations commute

Key idea

The quotient of a subgroup is just the subgroup of the quotient.

Example: Consider the group $G=\mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)$.

$$
\mathrm{V}_{4} \cong \mathrm{H} / \mathrm{N} \leq \mathrm{G} / \mathrm{N}
$$

"subgroup of the quotient"

The fraction theorem: quotients of quotients

The correspondence theorem characterizes the subgroup structure of the quotient G / N.
Every subgroup of G / N is of the form H / N, where $N \leq H \leq G$.
Moreover, if $H \unlhd G$, then $H / N \unlhd G / N$. In this case, we can ask:
What is the quotient group $(G / N) /(H / N)$ isomorphic to?

Fraction theorem

Given a chain $N \leq H \leq G$ of normal subgroups of G,

$$
(G / N) /(H / N) \cong G / H
$$

The fraction theorem: quotients of quotients

Fraction theorem

Given a chain $N \leq H \leq G$ of normal subgroups of G,

$$
(G / N) /(H / N) \cong G / H
$$

The fraction theorem: quotients of quotients

Let's continue our example of the semiabelian group $G=\mathrm{SA}_{8}=\langle r, s\rangle$.

$N \leq H \leq G$

$G / N=\langle r N, s N\rangle \cong C_{4} \times C_{2}$
$H / N=\left\langle r^{2} N\right\rangle=\left\{N, r^{2} N\right\} \cong C_{2}$

$G / H=\langle r H, s H\rangle \cong V_{4}$
$(G / N) /(H / N) \cong G / H$

The fraction theorem: quotients of quotients

Fraction theorem

Given a chain $N \leq H \leq G$ of normal subgroups of G,

$$
(G / N) /(H / N) \cong G / H .
$$

Proof

This is tailor-made for the FHT. Define the map

$$
\phi: G / N \longrightarrow G / H, \quad \phi: g N \longmapsto g H .
$$

- Show ϕ is well-defined: Suppose $g_{1} N=g_{2} N$. Then $g_{1}=g_{2} n$ for some $n \in N$. But $n \in H$ because $N \leq H$. Thus, $g_{1} H=g_{2} H$, i.e., $\phi\left(g_{1} N\right)=\phi\left(g_{2} N\right)$.
- ϕ is clearly onto and a homomorphism.
- Apply the FHT:

$$
\begin{aligned}
\operatorname{Ker}(\phi) & =\{g N \in G / N \mid \phi(g N)=H\} \\
& =\{g N \in G / N \mid g H=H\} \\
& =\{g N \in G / N \mid g \in H\}=H / N
\end{aligned}
$$

By the FHT, $(G / N) / \operatorname{Ker}(\phi)=(G / N) /(H / N) \cong \operatorname{Im}(\phi)=G / H$.

The fraction theorem: quotients of quotients

For another visualization, consider $G=\mathbb{Z}_{6} \times \mathbb{Z}_{4}$ and write elements as strings.
Consider the subgroups $N=\langle 30,02\rangle \cong V_{4}$ and $H=\langle 30,01\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}$.
Notice that $N \leq H \leq G$, and $H=N \cup(01+N)$, and

$$
\begin{aligned}
G / N & =\{N, 01+N, 10+N, 11+N, 20+N, 21+N\}, \quad H / N=\{N, 01+N\} \\
G / H & =\{N \cup(01+N),(10+N) \cup(11+N),(20+N) \cup(21+N)\} \\
(G / N) /(H / N) & =\{\{N, 01+N\},\{10+N, 11+N\},\{20+N, 21+N\}\} .
\end{aligned}
$$

$N \leq H \leq G$

G/N consists of 6 cosets $H / N=\{N, 01+N\}$

G/H consists of 3 cosets $(G / N) /(H / N) \cong G / H$

The diamond theorem: duality of subquotients

Diamond theorem

Suppose $A, B \leq G$, and that A normalizes B. Then
(i) $A \cap B \unlhd A$ and $B \unlhd A B$.
(ii) The following quotient groups are isomorphic:

$$
A B / B \cong A /(A \cap B)
$$

Proof (sketch)

Define the following map
If we can show: $\quad \phi: A \longrightarrow A B / B, \quad \phi: a \longmapsto a B$.

1. ϕ is a homomorphism, 2 2. ϕ is surjective (onto), \quad 3. $\operatorname{Ker}(\phi)=A \cap B$, then the result will follow immediately from the FHT. The details are left as HW.

Corollary

Let $A, B \leq G$, with one of them normalizing the other. Then $|A B|=\frac{|A| \cdot|B|}{|A \cap B|}$.

The diamond theorem: duality of subquotients

Let $G=\mathbb{Z}_{2} \times \mathbb{Z}_{6}$, and consider subgroups $A=\langle(1,0),(0,3)\rangle$, and $B=\langle(0,2)\rangle$.
Then $G=A B$, and $A \cap B=\langle(0,0)\rangle$.
Let's interpret the diamond theorem $A B / B \cong A / A \cap B$ in terms of the subgroup lattice.

$$
\text { Index }=1
$$

2

Order $=12$

The fact that the subgroup lattice of V_{4} is diamond shaped is coincidental.

The diamond theorem: duality of subquotients

The diamond theorem illustrated by a "pizza diagram"

The following analogy is due to Douglas Hofstadter:

$$
\begin{aligned}
& A B=\text { large pizza } \\
& A=\text { small pizza } \\
& B=\text { large pizza slice } \\
& A \cap B=\text { small pizza slice } \\
& A B / B=\{\text { large pizza slices }\} \\
& A /(A \cap B)=\{\text { small pizza slices }\}
\end{aligned}
$$

Diamond theorem: $A B / B \cong A /(A \cap B)$

The diamond theorem: duality of subquotients

Proposition

Suppose H is a subgroup of S_{n} that is not contained in A_{n}. Then exactly half of the permutations in H are even.

Index $=1$

2
m
$2 m$

$$
\begin{array}{r}
\text { Order }=n! \\
n!/ 2 \\
n!/ m \\
n!/ 2 m
\end{array}
$$

Proof

It suffices to show that $\left[H: H \cap A_{n}\right]=2$, or equivalently, that $H /\left(H \cap A_{n}\right) \cong C_{2}$.
Since $H \not \leq A_{n}$, the product $H A_{n}$ must be strictly larger, and so $H A_{n}=S_{n}$.
By the diamond theorem,

$$
H /\left(H \cap A_{n}\right)=H A_{n} / A_{n}=S_{n} / A_{n} \cong C_{2} .
$$

A generalization of the FHT

Theorem (exercise)

Every homomorphism $\phi: G \rightarrow H$ can be factored as a quotient and embedding:

A generalization of the FHT

A theorem of Hans Zassenhaus

Butterfly lemma (see book for proof)

Let A, B be subgroups of a group, that contain $M \unlhd A$ and $N \unlhd B$. Then

1. $(A \cap N) M \unlhd(A \cap B) M$,
2. $(B \cap M) N \unlhd(A \cap B) N$,
3. The following quotient groups are isomorphic:

$$
\frac{(A \cap B) M}{(A \cap N) M} \cong \frac{(A \cap B) N}{(B \cap M) N}
$$

The quotient $G / Z(G)$ can never be a nontrivial cyclic subgroup
Lemma (exercise; see images below)
If $G / Z(G)$ is cyclic, then G is abelian.

Note that if G is abelian, then $Z(G)=G$.

Commutators

We've seen how to divide \mathbb{Z} by $\langle 12\rangle$, thereby "forcing" all multiples of 12 to be zero. This is one way to construct the integers modulo 12 : $\mathbb{Z}_{12} \cong \mathbb{Z} /\langle 12\rangle$.

Now, suppose G is nonabelian. We'd like to divide G by its "non-abelian parts," making them zero and leaving only "abelian parts" in the resulting quotient.

A commutator is an element of the form $a b a^{-1} b^{-1}$. Since G is nonabelian, there are non-identity commutators: $a b a^{-1} b^{-1} \neq e$ in G.

In this case, the set $C:=\left\{a b a^{-1} b^{-1} \mid a, b \in G\right\}$ contains more than the identity.

Definition

The commutator subgroup G^{\prime} of G is

$$
G^{\prime}:=\left\langle a b a^{-1} b^{-1} \mid a, b \in G\right\rangle .
$$

The commutator subgroup is normal in G, and G / G^{\prime} is abelian (homework).

The abelianization of a group

Definition

The abelianization of G is the quotient group G / G^{\prime}.

The commutator subgroup G^{\prime} is the smallest normal subgroup N of G such that G / N is abelian. [Note that G would be the "largest" such subgroup.]

Equivalently, the quotient G / G^{\prime} is the largest abelian quotient of G. [Note that $G / G \cong\langle e\rangle$ would be the "smallest" such quotient.]

Universal property of commutator subgroups

Suppose $f: G \rightarrow A$ is a homomorphism to an abelian group A. Then there is a unique homomorphism $h: G / G^{\prime} \rightarrow A$ such that $f=h \circ \pi$:

We say that f "factors through" the abelianization, G / G^{\prime}.

Some examples of abelianizations

By the isormophism theorems, we can usually identitfy the commutator subgroup G and abelianation by inspection, from the subgroup lattice.

Automorphisms

We have already seen automorphisms of cyclic groups: "structure-preserving rewirings."
For a general group G, an automorphism is a isomorphism $\phi: G \rightarrow G$.
The set of automorphisms of G defines the automorphism group of G, denoted Aut (G).

Proposition

The automorphism group of \mathbb{Z}_{n} is $\operatorname{Aut}\left(\mathbb{Z}_{n}\right)=\left\{\sigma_{a} \mid a \in U_{n}\right\} \cong U_{n}$, where

$$
\sigma_{a}: \mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{n}, \quad \sigma_{a}(1)=a .
$$

$U_{7}=\langle 3\rangle \cong \mathrm{C}_{6}$						
	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

$\operatorname{Aut}\left(\mathbf{C}_{7}\right)=\left\langle\sigma_{3}\right\rangle \cong \mathbf{U}_{7}$						
	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}	σ_{6}
σ_{1}	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}	σ_{6}
σ_{2}	σ_{2}	σ_{4}	σ_{6}	σ_{1}	σ_{3}	σ_{5}
σ_{3}	σ_{3}	σ_{6}	σ_{2}	σ_{5}	σ_{1}	σ_{4}
σ_{4}	σ_{4}	σ_{1}	σ_{5}	σ_{2}	σ_{6}	σ_{3}
σ_{5}	σ_{5}	σ_{3}	σ_{1}	σ_{6}	σ_{4}	σ_{2}
σ_{6}	σ_{6}	σ_{5}	σ_{4}	σ_{3}	σ_{2}	σ_{1}

An example: the automorphism group of C_{7}

Automorphisms of noncyclic groups

An automorphism is determined by where it sends the generators.

Examples

1. An automorphism ϕ of $V_{4}=\langle h, v\rangle$ is determined by the image of h and v.

There are 3 choices for $\phi(h)$, then 2 choices for $\phi(v)$, thus $\left|\operatorname{Aut}\left(V_{4}\right)\right|=6$.
Every permutation of $\{h, v, r\}$ is an automorphism, and so $\operatorname{Aut}\left(V_{4}\right) \cong S_{3}$.
2. Every $\phi \in \operatorname{Aut}\left(D_{3}\right)$ is determined by $\phi(r)$ and $\phi(f)$.

Since automorphisms preserve order, if $\phi \in \operatorname{Aut}\left(D_{3}\right)$, then

$$
\phi(1)=1, \quad \phi(r)=\underbrace{r \text { or } r^{2}}_{2 \text { choices }}, \quad \phi(f)=\underbrace{f, r f, \text { or } r^{2} f}_{3 \text { choices }} .
$$

Thus, $\left|\operatorname{Aut}\left(D_{3}\right)\right| \leq 6$. Both of the following define automorphisms of D_{3} :

$$
\left\{\begin{array} { l }
{ \alpha (r) = r } \\
{ \alpha (f) = r f }
\end{array} \quad \left\{\begin{array}{l}
\beta(r)=r^{2} \\
\beta(f)=f
\end{array}\right.\right.
$$

It is elementary to check that $\alpha \beta=\beta \alpha^{2}$, and so $\operatorname{Aut}\left(D_{3}\right) \cong D_{3} \cong S_{3}$.

Automorphisms of $V_{4}=\langle h, v\rangle$

The following permutations are both automorphisms:

Automorphisms of $V_{4}=\langle h, v\rangle$

Here is the Cayley table and Cayley graph of $\operatorname{Aut}\left(V_{4}\right)=\langle\alpha, \beta\rangle \cong S_{3} \cong D_{3}$.

Recall that α and β can be thought of as the permutations $h v$ and $h v$ and so $\operatorname{Aut}(G) \hookrightarrow \operatorname{Perm}(G) \cong S_{n}$ always holds.

The construction of $V_{4} \rtimes C_{2}$

A labeling map $\theta_{i}: C_{2} \longrightarrow \operatorname{Aut}\left(V_{4}\right) \cong D_{3}$ is just a homomorphism. There are four:

$s \stackrel{\theta_{0}}{\longmapsto} \beta$
$s \stackrel{\theta_{1}}{\longmapsto} \alpha \beta$

$s \stackrel{\theta_{2}}{\longmapsto} \alpha^{2} \beta$

Let's now carry out our "inflation method" to construct $V_{4} \rtimes C_{2}$.

Start with a copy of $B=C_{2}$

Inflate each node, insert rewired versions of $A=V_{4}$, and connect corresponding nodes

rearrange the Cayley graph What familiar group is $V_{4} \rtimes C_{2}$?

Automorphisms of D_{3}
$r \xrightarrow{\alpha^{2}} r$ and r rer r

Automorphisms of D_{3}

Here is the Cayley table and Cayley graph of $\operatorname{Aut}\left(D_{3}\right)=\langle\alpha, \beta\rangle$.

	id	α	α^{2}	β	$\alpha \beta$	$\alpha^{2} \beta$
id	id	α	α^{2}	β	$\alpha \beta$	$\alpha^{2} \beta$
α	α	α^{2}	$i d$	$\alpha \beta$	$\alpha^{2} \beta$	β
α^{2}	α^{2}	$i d$	α	$\alpha^{2} \beta$	β	$\alpha \beta$
β	β	$\alpha^{2} \beta$	$\alpha \beta$	$i d$	α^{2}	α
$\alpha \beta$	$\alpha \beta$	β	$\alpha^{2} \beta$	α	$i d$	α^{2}
$\alpha^{2} \beta$	$\alpha^{2} \beta$	$\alpha \beta$	β	α^{2}	α	$i d$

$$
\boldsymbol{\alpha}: \quad r \quad r^{2} f r f r^{2} f \quad \text { and } \quad \boldsymbol{\beta}: r r^{2} f r r r^{2} f
$$

Automorphisms of D_{3}

Here is the Cayley table and Cayley graph of $\operatorname{Aut}\left(D_{3}\right)=\langle\alpha, \beta\rangle$.

	id	α	α^{2}	β	$\alpha \beta$	$\alpha^{2} \beta$
$i d$	$i d$	α	α^{2}	β	$\alpha \beta$	$\alpha^{2} \beta$
α	α	α^{2}	$i d$	$\alpha \beta$	$\alpha^{2} \beta$	β
α^{2}	α^{2}	$i d$	α	$\alpha^{2} \beta$	β	$\alpha \beta$
β	β	$\alpha^{2} \beta$	$\alpha \beta$	$i d$	α^{2}	α
$\alpha \beta$	$\alpha \beta$	β	$\alpha^{2} \beta$	α	$i d$	α^{2}
$\alpha^{2} \beta$	$\alpha^{2} \beta$	$\alpha \beta$	β	α^{2}	α	$i d$

$$
\boldsymbol{\alpha}: r r^{2} f r f r^{2} f \quad \text { and } \boldsymbol{\beta}: r r^{2} f r r r^{2} f
$$

A few more examples of semidirect products
What groups are these?

Inner and outer automorphisms

Earlier in this class, we conjugated an entire group G by a fixed element $x \in G$.
This is an example of an inner automorphism. Here are two examples:

This permutes subgroups within a conjugacy class: $r^{-1}\langle f\rangle r=\langle r f\rangle$.
Every subgroup of Q_{8} is normal, thus any inner automorphism fixes every subgroup.
However, there is an automorphism of Q_{8} that permutes subgroups, defined by

$$
\phi: Q_{8} \longrightarrow Q_{8}, \quad \phi(i)=j, \quad \phi(j)=k \quad \Rightarrow \quad \phi(k)=\phi(i j)=\phi(i) \phi(j)=j k=i .
$$

This is called an outer automorphism.

The inner automorphism group

Definition

An inner automorphism of G is an automorphism $\varphi_{x} \in \operatorname{Aut}(G)$ defined by

$$
\varphi_{x}(g):=x^{-1} g x, \quad \text { for some } x \in G .
$$

The inner automorphisms of G form a group, denoted $\operatorname{Inn}(G)$. (Exercise)

There are four inner automorphisms of D_{4} :

Since $\varphi_{x}^{2}=I d$ for all of these, $\operatorname{lnn}\left(D_{4}\right)=\left\langle\varphi_{r}, \varphi_{f}\right\rangle \cong V_{4}$.
Are there any other automorphisms of D_{4} ?

The inner automorphism group

Proposition (exercise)

$\operatorname{lnn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$.

Remarks

- Many books define $\varphi_{x}(g)=x g x^{-1}$. Our choice is so $\varphi_{x y}=\varphi_{x} \varphi_{y}$ (reading L-to-R).
- If $z \in Z(G)$, then $\varphi_{z} \in \operatorname{lnn}(G)$ is trivial.
- If $x=y z$ for some $z \in Z(G)$, then $\varphi_{x}=\varphi_{y}$ in $\operatorname{lnn}(G)$:

$$
\varphi_{x}(g)=x^{-1} g x=(y z)^{-1} g(y z)=z^{-1}\left(y^{-1} g y\right) z=y^{-1} g y=\varphi_{y}(g) .
$$

That is, if x and y are in the same coset of $Z(G)$, then $\varphi_{x}=\varphi_{y}$. (And conversely.)

Z	$r Z$	$f Z$	r
1	r	f	$r f$
r^{2}	r^{3}	$r^{2} f$	$r^{3} f$

cosets of $Z\left(D_{4}\right)$ are in bijection with inner automorphisms of D_{4}

$\mathrm{cl}(1)$	1	r	f	$r f$
$\left(r^{2}\right)$	r^{2}	r^{3}	$r^{2} f$	$r^{3} f$
$\mathrm{cl}(r)$				$\mathrm{cl}(f)$

inner automorphisms of D_{4} permute elements within conjugacy classes

The inner automorphism group

Key point

Two elements $x, y \in G$ are in the same coset of $Z(G)$ if and only if $\varphi_{x}=\varphi_{y}$ in $\operatorname{lnn}(G)$.

Proposition

In any group G, we have $G / Z(G) \cong \operatorname{lnn}(G)$.

Proof

Consider the map

$$
f: G \longrightarrow \operatorname{lnn}(G), \quad x \longmapsto \varphi_{x}
$$

It is straightfoward to check this this is (i) a homomorphism, (ii) onto, and (iii) that $\operatorname{Ker}(f)=Z(G)$.

The result is now immediate from the FHT.
We just saw that $\operatorname{Aut}\left(D_{3}\right) \cong D_{3}$, and we know that $Z\left(D_{3}\right)=\langle 1\rangle$. Therefore,

$$
\operatorname{lnn}\left(D_{3}\right) \cong D_{3} / Z\left(D_{3}\right) \cong D_{3} \cong \operatorname{Aut}\left(D_{3}\right)
$$

i.e., every automorphism is inner.

Inner automorphisms of D_{3}
Let's label each $\phi \in \operatorname{Aut}\left(D_{3}\right)$ with the corresponding inner automorphism.

Automorphisms of D_{4}

Every automorphism of $D_{4}=\langle r, f\rangle$ is determined by where it sends the generators:

$$
\phi(r)=\underbrace{r \text { or } r^{3}}_{2 \text { choices }}, \quad \phi(f)=\underbrace{f, r f, r^{2} f, r^{3} f, \text { or } r^{2}}_{5 \text { choices }} .
$$

Thus $\left|\operatorname{Aut}\left(D_{4}\right)\right| \leq 10$. But $\operatorname{Inn}\left(D_{4}\right) \leq \operatorname{Aut}\left(D_{4}\right)$, forces $\left|\operatorname{Aut}\left(D_{4}\right)\right|=4$ or 8. Moreover,

$$
\omega: D_{4} \longrightarrow D_{4}, \quad \omega(r)=r, \quad \omega(f)=r f
$$

is an (outer) automorphism, which swaps the "two types" of reflections of the square.

$$
\operatorname{Aut}\left(D_{4}\right)=\left\{l d, \varphi_{r}, \varphi_{f}, \varphi_{r f}, \omega, \varphi_{r} \omega, \varphi_{f} \omega, \varphi_{r f} \omega\right\}=\operatorname{lnn}\left(D_{4}\right) \cup \operatorname{lnn}\left(D_{4}\right) \omega \cong D_{4} .
$$

The full automorphism group of D_{4}

The outer automorphism group

Definition

An outer automorphism of G is any automorphism that is not inner.
The outer automorphism group of G is the quotient $\operatorname{Out}(G):=\operatorname{Aut}(G) / \operatorname{Inn}(G)$.

$\operatorname{Aut}\left(D_{4}\right) \cong \operatorname{Inn}\left(D_{4}\right) \rtimes \operatorname{Out}\left(D_{4}\right)$

Note that there are four outer automorphisms, but $\left|\operatorname{Out}\left(D_{4}\right)\right|=2$.
We have seen: $\operatorname{Out}\left(V_{4}\right) \cong D_{3}, \operatorname{Out}\left(D_{3}\right) \cong\{\operatorname{Id}\}, \quad \operatorname{Out}\left(D_{4}\right) \cong C_{2}, \quad \operatorname{Out}\left(Q_{8}\right) \cong S_{3}$.

Class automorphisms

Proposition (exercise)

Automorphisms permute conjugacy classes. That is, $g, h \in G$ are conjugate if and only if $\phi(g)$ and $\phi(h)$ are conjugate.

It is natural to ask if an automorphism being inner is equivalent to being the identity permutation on conjugacy classes.

In other words:

$$
\text { "if } \phi \in \operatorname{Aut}(G) \text { sends every element to a conjugate, must } \phi \in \operatorname{Inn}(G) \text { ?' }
$$

The answer is "no". Burnside found examples of groups of order at least 729 that admit such an automorphism.

Definition

A class automorphism is an automorphism that sends every element to another in its conjugacy class.

In 1947, G.E. Wall found a group of order 32 with a class automorphism that is outer.

Semidirect products, algebraically

Thus far, we've see how to construct $A \rtimes_{\theta} B$ with our "inflation method."
Given A (for "automorphism") and B (for "balloon"), we label each inflated node $b \in B$ with $\phi \in \operatorname{Aut}(A)$ via some labeling map

$$
\theta: B \longrightarrow \operatorname{Aut}(A)
$$

Of course can all be defined algebraically. Denote multiplication in $A \times B$ by

$$
\left(a_{1}, b_{1}\right) \cdot\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}, b_{1} b_{2}\right)
$$

Definition

The (external) semidirect product $A \rtimes_{\theta} B$ of A and B, with respect to the homomorphism

$$
\theta: B \longrightarrow \operatorname{Aut}(A)
$$

is on the underlying set $A \times B$, where the binary operation $*$ is defined as

$$
\left(a_{1}, b_{1}\right) *\left(a_{2}, b_{2}\right):=\left(a_{1}, b_{1}\right) \cdot\left(\theta\left(b_{1}\right) a_{2}, b_{2}\right)=\left(a_{1} \theta\left(b_{1}\right) a_{2}, b_{1} b_{2}\right) .
$$

The isomorphic group on $B \times A$ by swapping the coordinates above is written $B \ltimes_{\theta} A$.

An example: the direct product $C_{5} \times C_{4}$

An example: the semidirect product $C_{5} \rtimes_{\theta} C_{4}$

Revisiting semidirect products

Recall how to multipy in $A \rtimes_{\theta} B$:

$$
\left(a_{1}, b_{1}\right) *\left(a_{2}, b_{2}\right):=\left(a_{1}, b_{1}\right) \cdot\left(\theta\left(b_{1}\right) a_{2}, b_{2}\right)=\left(a_{1} \theta\left(b_{1}\right) a_{2}, b_{1} b_{2}\right)
$$

Lemma

The subgroup $A \times\{1\}$ is normal in $A \rtimes_{\theta} B$.

Proof

Let's conjugate an arbitrary element $(g, 1) \in A \times\{1\}$ by an element $(a, b) \in A \rtimes_{\theta} B$.

$$
(a, b)(x, 1)(a, b)^{-1}=(a \theta(b) g, b)\left(a^{-1}, b^{-1}\right)=(\underbrace{a \theta(b) g \theta(b) a^{-1}}_{\in A}, 1) \in A \times\{1\} .
$$

Not all books use the same notation for semidirect product. Ours is motivated by:

- In $A \times B$, both factors are normal (technically, $A \times\{1\}$ and $\{1\} \times B$).
- In $A \rtimes B$, the group on the "open" side of \rtimes is normal.

Internal products

Previously, we've looked at outer products: taking two unrelated groups and constructing a direct or semidirect product.

Now, we'll explore when a group $G=N H$ is isomorphic to a direct or semidirect product.
These are called internal products. Let's see two examples:

$C_{6}=N H \cong N \times H$

$\theta_{1}: r \mapsto \varphi$
$D_{3}=N H \cong N \rtimes_{\theta} H$

Questions

- Can we characterize when $N H \cong N \times H$ and/or $N H \cong N \rtimes_{\theta} H$?
- If $N H \cong N \rtimes_{\theta} H$, then what is the map $\theta: H \rightarrow \operatorname{Aut}(N)$?

Internal direct products

When $G=N H$ is isomorphic to $N \times H$, we have an isomorphism

$$
i: N \times H \longrightarrow N H, \quad i:(n, h) \longmapsto n h .
$$

Since $N \times\{1\}$ and $\{1\} \times H$ are normal in $N \times H$, the subgroups N and H are normal in $N H$.
Recall that earlier, we showed that

$$
|N H|=\frac{|N| \cdot|H|}{|N \cap H|}
$$

and so it follows that if $N H \cong N \times H$, then $N \cap H=\{e\}$.

Theorem

Let $N, H \leq G$. Then $G \cong N \times H$ iff the following conditions hold:
(i) N and H are normal in G
(ii) $N \cap H=\{e\}$
(iii) $G=N H$.

Remark

This has a very nice interpretation in terms of subgroup lattices! Groups for which (ii) and (iii) hold are called lattice complements.

Internal semidirect products

When $G=N H$ is isomorphic to $N \rtimes_{\theta} H$, we have an isomorphism

$$
i: N \rtimes_{\theta} H \longrightarrow N H, \quad i:(n, h) \longmapsto n h .
$$

This time, only $N \times\{1\}$ needs to be normal in $N \times H$, and so $N \unlhd N H$.
As before, from

$$
|N H|=\frac{|N| \cdot|H|}{|N \cap H|}
$$

we conclude that if $N H \cong N \rtimes_{\theta} H$, then $N \cap H=\{e\}$.

Theorem

Let $N, H \leq G$. Then $G \cong N \rtimes H$ iff the following conditions hold:
(i) N is normal in G
(ii) $N \cap H=\{e\}$
(iii) $G=N H$,
and the homomorphism θ sends h to the inner automorphism $\varphi_{h^{-1}}$:

$$
\theta: H \longrightarrow \operatorname{Aut}(N), \quad \theta: h \longmapsto\left(n \stackrel{\varphi_{h-1}}{\longmapsto} h^{-1} n h\right) .
$$

Let's do several examples for intution, before proving this.

Examples of internal semidirect products

Observations

- The group SD_{8} decomposes as a semidirect product several ways:

$$
N=\langle r\rangle \cong C_{8}, \quad H=\langle s\rangle \cong C_{2}, \quad \mathrm{SD}_{8}=N H \cong C_{8} \rtimes_{\theta_{3}} C_{2} .
$$

or alternatively,

$$
N=\left\langle r^{2}, r s\right\rangle \cong Q_{8}, \quad H=\langle s\rangle \cong C_{2}, \quad \mathrm{SD}_{8}=N H \cong Q_{8} \rtimes_{\theta^{\prime}} C_{2}
$$

- The group Q_{16} does not decompose as a semidirect product!

Semidihedral groups as semidirect products

$$
\mathrm{SD}_{8}
$$

Generalized quaternion groups

Recall that a generalized quaternion group is a dicyclic group whose order is a power of 2 . It's not hard to see that $r^{8}=s^{2}=-1$ is contained in every cyclic subgroup.

Therefore, $Q_{2^{n}} \nsubseteq N \rtimes H$ for any of its nontrivial subgroups.

Internal semidirect products and inner automorphisms

Theorem

Let $N, H \leq G$. Then $G \cong N \rtimes H$ iff the following conditions hold:
(i) N is normal in G
(ii) $N \cap H=\{e\}$
(iii) $G=N H$,
and the homomorphism θ sends h to the inner automorphism φ_{h} :

$$
\theta: H \longrightarrow \operatorname{Aut}(N), \quad \theta: h \longmapsto\left(n \stackrel{\varphi_{h^{-1}}}{\longmapsto} h^{-1} n h\right) .
$$

Proof

We only need to establish that θ sends $h \mapsto \varphi_{h^{-1}}$.
Take $n_{1} h_{1}$ and $n_{2} h_{2}$ in NH. Their product is

$$
\left(n_{1} h_{1}\right) *\left(n_{2} h_{2}\right)=n_{1} \theta\left(h_{1}\right) n_{2} h_{1} h_{2}
$$

for some $\theta\left(h_{1}\right) \in \operatorname{Aut}(N)$.
To see why $\theta\left(h_{1}\right)$ is the inner automorphism $\varphi_{h_{1}}$, note that

$$
n_{1} \varphi_{h_{1}^{-1}}\left(n_{2}\right) h_{1} h_{2}=n_{1}\left(h_{1}^{-1} n_{2} h_{1}\right) h_{1} h_{2}=\left(n_{1} h_{1}\right) *\left(n_{2} h_{2}\right)
$$

Internal direct and semidirect products

How many ways does D_{6} decompose as an direct or semidirect product of its subgroups?

Decompositions of D_{6} into direct and semdirect products

Decompositions of D_{6} into direct and semdirect products

$$
C_{6} \rtimes C_{2}
$$

$$
D_{3} \rtimes C_{2}
$$

$C_{3} \rtimes V_{4}$

$$
D_{3} \times C_{2}
$$

Central products

The following 3 conditions characterize when $G=N H \cong N \times H$.

1. H and N are normal,
2. $G=\langle H, N\rangle$,
3. $H \cap N=\langle 1\rangle$.

If weaken the first to only N being normal, we get $G=N H \cong N \rtimes H$.
Alernatively, we can keep the first two but weaken the third.

Definition

Suppose H and N are subgroups of G satisfying:

1. H and N are normal,
2. $G=\langle H, N\rangle$,
3. $H \cap N \leq Z(G)$.

The G is an internal central product of H and K, denoted $G \cong H \circ K$.

We can also define an external central product of A and B, but we won't do that here.

Central products

The diquaternion group DQ_{8} is a central product two nontrivial ways:
■ $\mathrm{DQ}_{8} \cong C_{4} \circ Q_{8}$

- $\mathrm{DQ}_{8} \cong C_{4} \circ D_{4}$.

Recall that $Z\left(\mathrm{DQ}_{8}\right)=N \cong C_{4}$.

