Chapter 6: Extensions of groups

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4130, Visual Algebra

Chapter overview

Chemistry investigates how matter is assembled from basic "building blocks" (atoms).

Main goal

Understand how groups are assembled from basic "building blocks" (simple groups).

This chapter is broken into three parts:

1. Finite abelian groups are products of cyclic groups.
2. The classification of finite simple groups: the "periodic table of groups."
3. Extensions of groups: like doing "all of chemistry for groups."
(a) Groups built from simple extensions (all groups)
(b) Groups built from abelian extensions (solvable groups)
(c) Groups built from central extensions (nilpotent groups)

Finite abelian groups

Lemma 1

Let $|G|=p^{n}$. Then G is cyclic iff it has a unique subgroup of order p^{k} for each $k=0,1, \ldots, n$.

Proof

If $G \cong C_{p^{n}}=\langle r\rangle$, then $\left\langle r^{d}\right\rangle$ is the unique subgroup of order p^{n} / d.
Conversely, suppose G has a subgroup of order p^{k} for each $k=0,1, \ldots, n$, and let $|H|=p^{n-1}$.

By the first Sylow theorem, H has a subgroup of each order p^{k} as well, for $k=0,1, \ldots, n-1$.

Therefore, it must contain the unique subgroup of G of each of these orders, and hence, every proper subgroup of G.

Now, take any $g \notin H$. The cyclic subgroup $\langle g\rangle$ of G cannot be any of the subgroups of H, so it must be G.

Finite abelian groups

Lemma 2

If G is an abelian p-group with a unique subgroup of order p, then G is cyclic.

Proof

Induct on n, where $|G|=p^{n}$. The base case is trivial.
Suppose it holds for all p-groups of order up to p^{n-1}. Consider the homomorphism

$$
\phi: G \longrightarrow G, \quad \phi(x)=x^{p} .
$$

The kernel is the unique subgroup $N \leq G$ of order p.
By Cauchy's theorem, every nontrivial subgroup of G must contain N.

Finite abelian groups

Lemma 2

If G is an abelian p-group with a unique subgroup of order p, then G is cyclic.

Proof (contin.)

By the FHT, $\phi(G) \cong G / N$ has order p^{n-1}.
However, $\phi(G) \leq G$, so it has a unique subgroup of order p.
By induction, $\phi(G) \cong G / N$ is cyclic, so it has a unique order- p^{k} subgroup H / N, for each $k \leq n-1$.

By the correspondence theorem, H is the unique subgroup of G of order p^{k-1}.

Order: p^{n}

p

Finite abelian groups

Lemma 3

Let G be a finite abelian p-group, and $A \leq G$ a maximal cyclic subgroup. Then $G=A \times H$ for some subgroup H.

Proof

Induct on n, where $|G|=p^{n}$. The base case is trivial.
Let $A=\langle a\rangle$ for $|a|=p^{k}$, and assume the result holds for p-groups of order $<|G|=p^{n}$.
By the Lemma, there is a subgroup $B \leq G$ of order p, not contained in A.
By the diamond theorem: $A B / B \cong A /(A \cap B) \cong A$.

Finite abelian groups

Lemma 3

Let G be a finite abelian p-group, and $A \leq G$ a maximal cyclic subgroup. Then $G=A \times H$ for some subgroup H.

Proof (contin.)

No quotient of G can have a cyclic subgroup of order larger than $|A|=p^{k}$ (because $|H / N|=|\langle b H\rangle|=p^{l}>p^{k}$ in would force $\left.|\langle b\rangle|>p^{k}\right)$.

Therefore, $A B / B \cong A$ is a maximal cyclic subgroup of G / B.
By induction, there is some $H / B \leq G / B$ for which $G / B \cong A B / B \times H / B$.

Finite abelian groups

Lemma 3

Let G be a finite abelian p-group, and $A \leq G$ a maximal cyclic subgroup. Then $G=A \times H$ for some subgroup H.

Proof (contin.)

It suffices to show that A and H are lattice complements in G.
Generate G : Since $B \leq H$, we have $B H=H$ and $A B \subseteq A H$, and hence

$$
G=(A B) H=A(B H)=A H .
$$

Intersect trivially: Using $A \subseteq A B$ and basic set theory:

$$
A \cap H \subseteq A \cap H \cap A B=A \cap(H \cap A B)=A \cap B=\langle 1\rangle .
$$

$G / B \cong(A B / B) \times(H / B)$

Finite abelian groups

Lemma 4

Every finite abelian group is a direct product of its Sylow p-groups.

Proof

Induct on the number of primes dividing $|G|$.

Fundamental theorem of finite abelian groups

Every finite abelian group is a direct product of cyclic groups.

Proof

By Lemma 4, it suffices to consider the case of $|G|=p^{n}$. We'll induct on n.
The cases of $n=0$ and $n=1$ are trivial. Assume the result holds for all groups of order p^{1}, \ldots, p^{n-1}.

If G is not cyclic, let A be a maximal cyclic subgroup.
Write $G=A \times H$ using Lemma 3, and apply the induction hypothesis.

Conjugacy classes in A_{n}

Elements in S_{n} are conjugate iff they have the same cycle type.
However, 8 of the 12 elements in A_{4} are 3 -cycles. These cannot all be conjugate.
Take $\sigma \in A_{n}$. The size of its conjugacy class is the index of its centralizer.
There are two cases to consider:

1. $C_{S_{n}}(\sigma)$ is a subgroup of A_{n}, or equivalently, $C_{A_{n}}(\sigma)=C_{S_{n}}(\sigma)$
2. $C_{S_{n}}(\sigma)$ is not a subgroup of A_{n}, or equivalently, $C_{A_{n}}(\sigma)=C_{S_{n}}(\sigma) \cap A_{n}$.

$$
\left|\mathrm{cl}_{S_{n}}(\sigma)\right|=2 m\left\{\begin{array}{c}
S_{n} \\
A_{2} \\
A_{n} \\
m=\left|\mathrm{cl}_{A_{n}}(\sigma)\right| \\
C_{S_{n}}(\sigma)=C_{A_{n}}(\sigma)
\end{array}\right.
$$

Key idea

Upon restricting to $A_{n} \leq S_{n}$, the conjugacy class of σ is either preserved or splits in two.

Simplicity of A_{5}

For example, S_{5} has 7 conjugacy classes: $\mathrm{cl}_{S_{5}}(e)=\{e\}$, and
$\mathrm{cl}_{S_{5}}((12)), \quad \mathrm{cl}{S_{5}}((123)), \quad \mathrm{cl}_{S_{5}}((1234)), \quad \mathrm{cl}_{S_{5}}((12345)), \quad \mathrm{cl}_{S_{5}}((12)(34)), \quad \mathrm{cl}_{S_{5}}((12)(345))$.
To find the conjugacy classes of A_{5}, first disregard the odd permutations. Note that:

- $C_{S_{5}}(e)=S_{5}$
- $C_{S_{5}}((12)(34))$ and $C_{S_{5}}((123))$ both contain some $(i j) \notin A_{5}$
- $C_{S_{5}}((12345)) \leq A_{5}$

Therefore, the size-24 conjugacy class containing (12345) splits in A_{5}.

$$
\left|\mathrm{cl}_{S_{5}}((123))\right|=20, \quad\left|\mathrm{cl}_{S_{5}}((12345))\right|=12, \quad\left|\mathrm{cl}_{S_{5}}((13524))\right|=12, \quad\left|\mathrm{cl}_{S_{5}}((12)(34))\right|=15 .
$$

Proposition

The alternating group A_{5} is simple.

Proof

Any normal subgroup of A_{5} must have order $2,3,4,5,6,12,15,20$, or 30 .
It's also the union of conjugacy classes: $\{e\}$ and other(s) of sizes $12,12,15$, and 20.
Other than A_{5} and $\langle e\rangle$, this is impossible.

A few basic properties of the alternating group A_{n}

Lemma

(i) A_{n} is generated by 3 -cycles, if $n \geq 3$.
(ii) all 3-cycles are conjugate to (123), if $n \geq 5$.

Proof

(i) Since $A_{3}=\langle(123)\rangle$, take $n \geq 4$.
A_{n} is generated by products of pairs of transpositions.

- Type 1. Disjoint transpositions:

$$
(a b)(c d)=(a c d)(a c b)
$$

- Type 2. Overlapping transpositions:

$$
(a b)(b c)=(a c b)
$$

(ii) Take any 3-cycle (abc), and write

$$
(a b c)=\sigma(123) \sigma^{-1}, \quad \sigma \in S_{n}
$$

If $\sigma \in A_{n}$, we're done. Otherwise, conjugate (123) by $\sigma \cdot(45) \in A_{n}$.

Simplicity of A_{n}

Theorem

The alternating group A_{n} is simple, for all $n \geq 5$.

Proof

Consider a nontrivial proper normal subgroup $N \unlhd G$.
All we have to do is show that N contains a 3 -cycle. (Why?)
Pick any nontrivial $\sigma \in N$, and write it as a product of disjoint cycles.
There are several cases to consider separately. We'll either
(i) construct a 3 -cycle from σ, or
(ii) construct an element in a previous case.

Case 1. σ contains a k-cycle $\left(a_{1} a_{2} \cdots a_{k}\right)$ for $k \geq 4$.
Then N contains a 3 -cycle:
$\underbrace{\left(a_{1} a_{2} a_{3}\right) \sigma\left(a_{1} a_{2} a_{3}\right)^{-1}}_{\in N} \cdot \sigma^{-1}=\left(a_{1} a_{2} a_{3}\right)\left(a_{1} a_{2} \cdots a_{k}\right)\left(a_{3} a_{2} a_{1}\right)\left(a_{k} \cdots a_{2} a_{1}\right)=\left(a_{2} a_{3} a_{k}\right) \in N . \quad \checkmark$
In the remaining cases, we can assume that σ is a product of 2- and 3-cycles.

Simplicity of A_{n}

Theorem

The alternating group A_{n} is simple, for all $n \geq 5$.

Proof (contin.)

Case 2. σ has at least two 3 -cycles; $\sigma=\left(a_{1} a_{2} a_{3}\right)\left(a_{4} a_{5} a_{6}\right) \cdots$.
If we conjugate σ by $\left(a_{1} a_{2} a_{4}\right)$, we can also ignore the other (commuting) cycles in σ.

$$
\begin{aligned}
\underbrace{\left(a_{1} a_{2} a_{4}\right) \sigma\left(a_{1} a_{2} a_{4}\right)^{-1}}_{\in N} \cdot \sigma^{-1} & =\left(a_{1} a_{2} a_{4}\right)\left[\left(a_{1} a_{2} a_{3}\right)\left(a_{4} a_{5} a_{6}\right) \cdots\right]\left(a_{4} a_{2} a_{1}\right)\left[\cdots\left(a_{6} a_{5} a_{4}\right)\left(a_{3} a_{2} a_{1}\right)\right] \\
& =\left(a_{1} a_{2} a_{4} a_{3} a_{6}\right) \in N .
\end{aligned}
$$

We are now back in Case 1.
Case 3. σ has only one 3 -cycle; $\sigma=\left(a_{1} a_{2} a_{3}\right)\left(a_{4} a_{5}\right)\left(a_{6} a_{7}\right) \cdots \cdots$.
Then $\sigma^{2}=\left(a_{1} a_{3} a_{2}\right) \in N$, and so $\sigma \in N$.
We've exhausted the cases where σ contains a 3-cycle.
In the remaining cases, we can assume that σ is a product of pairs of 2-cycles.

Simplicity of A_{n}

Theorem

The alternating group A_{5} is simple, for all $n \geq 5$.

Proof (contin.)

Case 4. σ is a product of 2 -cycles; $\sigma=\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right) \cdots$.
If we conjugate σ by $\left(a_{1} a_{2} a_{3}\right)$, we can ignore the other (commuting) 2 -cycles in σ.

$$
\begin{aligned}
\underbrace{\left(a_{1} a_{2} a_{3}\right) \sigma\left(a_{1} a_{2} a_{3}\right)^{-1}}_{\in N} \cdot \sigma^{-1} & =\left(a_{1} a_{2} a_{3}\right)\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right)\left(a_{3} a_{2} a_{1}\right)\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right) \\
& =\left(a_{1} a_{4}\right)\left(a_{2} a_{3}\right) \in N .
\end{aligned}
$$

Now, letting $\pi=\left(a_{1} a_{4} a_{5}\right)$,

$$
\begin{aligned}
\underbrace{\left(a_{1} a_{4}\right)\left(a_{2} a_{3}\right) \pi\left[\left(a_{1} a_{4}\right)\left(a_{2} a_{3}\right)\right]^{-1}}_{\in N} \cdot \pi^{-1} & =\left(a_{1} a_{4}\right)\left(a_{2} a_{3}\right)\left(a_{1} a_{4} a_{5}\right)\left(a_{1} a_{4}\right)\left(a_{2} a_{3}\right)\left(a_{5} a_{4} a_{1}\right) \\
& =\left(a_{1} a_{4} a_{5}\right) \in N .
\end{aligned}
$$

and this completes the proof.

Classification of finite simple groups

Theorem (2004)

Every finite simple group is isomorphic to one of the following groups:

- A cyclic group \mathbb{Z}_{p}, with p prime;
- An alternating group A_{n}, with $n \geq 5$;
- A Lie-type Chevalley group: $\operatorname{PSL}(n, q), \operatorname{PSU}(n, q), \operatorname{PsP}(2 n, p)$, and $P \Omega^{\epsilon}(n, q)$;
- A Lie-type group (twisted Chevalley group or the Tits group): $D_{4}(q), E_{6}(q), E_{7}(q)$, $E_{8}(q), F_{4}(q),{ }^{2} F_{4}\left(2^{n}\right)^{\prime}, G_{2}(q),{ }^{2} G_{2}\left(3^{n}\right),{ }^{2} B\left(2^{n}\right)$;
- One of 26 "sporadic groups."

The two largest sporadic groups are the:
■ "baby monster group" B, which has order

$$
|B|=2^{41} \cdot 3^{13} \cdot 5^{6} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47 \approx 4.15 \times 10^{33} ;
$$

■ "monster group" M, which has order

$$
|M|=2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \approx 8.08 \times 10^{53} .
$$

The proof of this classification theorem is spread across $\approx 15,000$ pages in ≈ 500 journal articles by over 100 authors, published between 1955 and 2004.

The 26 sporadic groups

Order $=8.08 \times 10^{53}$
4.15×10^{33}
1.26×10^{24}
8.68×10^{19}
4.16×10^{18}
4.09×10^{18}
9.07×10^{16}
5.18×10^{16}
2.73×10^{14}
6.46×10^{13}
4.23×10^{13}
4.96×10^{11}
4.61×10^{11}
4.48×10^{11}
1.46×10^{11}
4,030,387,200
$898,128,000$
244,823,040
50,232,960
44,352,000
10,200,960
604,800
443,520
175,560
95,040
7,920

The 31 nonabelian simple groups of order less than 100,000

ID	group	order	\#cl ${ }_{G}(\mathrm{~g})$	\#subgroups	\#cl ${ }_{G}(H)$	$\leq S_{n}\left(\min ^{\prime} \mathrm{l}\right)$	aka
60.5	A_{5}	$2^{2} \cdot 3 \cdot 5$	5	59	9	S_{5}	$A_{1}(4), A_{1}(5)$
168.42	$A_{1}(7)$	$2^{3} \cdot 3 \cdot 7$	6	179	15	S_{7}	$A_{2}(2), \mathrm{GL}_{3}\left(\mathbb{Z}_{2}\right)$
360.118	A_{6}	$2^{3} \cdot 3^{2} \cdot 5$	7	501	22	S_{6}	$A_{1}(9), B_{2}(2)^{\prime}$
504.156	$A_{1}(8)$	$2^{3} \cdot 3^{2} \cdot 7$	9	386	12	S_{9}	${ }^{2} G_{2}(3)^{\prime}, \mathrm{PSL}_{2}\left(\mathbb{F}_{8}\right)$
660.13	$A_{1}(11)$	$2^{2} \cdot 3 \cdot 5 \cdot 11$	8	620	16	S_{11}	$\mathrm{PSL}_{2}\left(\mathbb{Z}_{11}\right)$
1092.25	$A_{1}(13)$	$2^{2} \cdot 3 \cdot 7 \cdot 13$	9	942	16	S_{14}	$\mathrm{PSL}_{2}\left(\mathbb{Z}_{13}\right)$
2448.a	$A_{1}(17)$	$2^{4} \cdot 3^{2} \cdot 17$	11	2420	22	S_{18}	$\mathrm{PSL}_{2}\left(\mathbb{Z}_{17}\right)$
2520.a	A_{7}	$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$	9	3786	40	S_{7}	
3420a	$A_{1}(19)$	$2^{2} \cdot 3^{2} \cdot 5 \cdot 19$	12	2912	19	S_{20}	$\mathrm{PSL}_{2}\left(\mathbb{Z}_{19}\right)$
4080.a	$A_{1}(16)$	$2^{4} \cdot 3 \cdot 5 \cdot 17$	17	3455	21	S_{17}	$\mathrm{PSL}_{2}\left(\mathbb{F}_{16}\right)$
5616.a	$A_{2}(3)$	$2^{4} \cdot 3^{3} \cdot 13$	12	6374	51	S_{13}	$\mathrm{PSL}_{3}\left(\mathbb{Z}_{3}\right)$
6048.a	${ }^{2} A_{2}$ (3)	$2^{5} \cdot 3^{3} \cdot 7$	14	5150	36	S_{28}	$G_{2}(2)^{\prime}, \mathrm{PSU}_{3}\left(\mathbb{Z}_{3}\right)$
6072.a	$A_{1}(23)$	$2^{3} \cdot 3 \cdot 11 \cdot 23$	14	5915	23	S_{24}	$\mathrm{PSL}_{2}\left(\mathbb{Z}_{23}\right)$
7800.a	$A_{1}(25)$	$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$	15	9559	37	S_{26}	$\mathrm{PSL}_{2}\left(\mathbb{Z}_{25}\right)$
7920.a	M_{11}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$	10	8651	39	S_{11}	
9828.a	$A_{1}(27)$	$2^{2} \cdot 3^{3} \cdot 7 \cdot 13$	16	5286	16	S_{28}	$\mathrm{PSL}_{2}\left(\mathbb{Z}_{27}\right)$
12180.a	$A_{1}(29)$	$2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 29$	17	10040	22	S_{30}	$\mathrm{PSL}_{2}\left(\mathbb{Z}_{29}\right)$
14880.a	$A_{1}(31)$	$2^{5} \cdot 3 \cdot 5 \cdot 31$	18	15413	29	S_{32}	$\mathrm{PSL}_{2}\left(\mathbb{Z}_{31}\right)$
20160.a	A_{8}	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	14	48337	137	S_{8}	$A_{3}(2)$
20160.b	$A_{2}(4)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	10	44877	95	S_{21}	$\mathrm{PSL}_{3}\left(\mathbb{F}_{4}\right)$
25308.a	A_{1} (37)	$2^{2} \cdot 3^{2} \cdot 19 \cdot 37$	21	17731	23	S_{38}	$\mathrm{PSL}_{2}\left(\mathbb{Z}_{37}\right)$
25920.a	$A_{3}(4)$	$2^{6} \cdot 3^{4} \cdot 5$	20	45649	116	S_{27}	$B_{2}(3), C_{2}(3)$
29120.a	${ }^{2} B_{2}(8)$	$2^{6} \cdot 5 \cdot 7 \cdot 13$	11	17295	22	S_{65}	
32736.a	$A_{1}(32)$	$2^{5} \cdot 3 \cdot 11 \cdot 31$	33	22328	24	S_{33}	$\mathrm{PSL}_{2}\left(\mathrm{~F}_{32}\right)$
34440.a	$A_{1}(41)$	$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 41$	23	36129	33	S_{42}	$\mathrm{PSL}_{2}\left(\mathbb{Z}_{41}\right)$
39732.a	$A_{1}(43)$	$2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43$	24	25462	20	S_{44}	$\mathrm{PSL}_{2}\left(\mathbb{Z}_{43}\right)$
51888.a	$A_{1}(47)$	$2^{4} \cdot 3 \cdot 23 \cdot 47$	26	48837	29	S_{48}	$\mathrm{PSL}_{2}\left(\mathbb{Z}_{47}\right)$
58800.a	$A_{1}(49)$	$2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}$	27	73945	51	S_{50}	$\mathrm{PSL}_{2}\left(\mathbb{Z}_{49}\right)$
62400.a	${ }^{2} A_{2}(16)$	$2^{6} \cdot 3 \cdot 5^{2} \cdot 13$	22	31373	34	S_{65}	$U_{3}(4)$
74412.a	$A_{1}(53)$	$2^{2} \cdot 3^{3} \cdot 13 \cdot 53$	29	43254	20	S_{54}	$\mathrm{PSL}_{2}\left(\mathbb{Z}_{53}\right)$
95040.a	M_{12}	$2^{6} \cdot 3^{3} \cdot 5 \cdot 11$	15	214871	147	S_{12}	

The smallest nonabelian simple group ("group atom")

The second smallest nonabelian simple group ("group atom")

Index $=1$ 7 814

21
24 28

42
56

84

168

Order $=168$

24

The third smallest nonabelian simple group ("group atom")

The $71^{\text {st }}$ smallest nonabelian simple group: "Lie type $A_{1}(173)$ "

Image by Ivan Andrus, 2012

The Periodic Table Of Finite Simple Groups

Dynkin Diagrams of Simple Lie Algebras

c_{2}
2
c_{3}
3
c_{5}
5
c_{7}
7
c_{11}
11
c_{13}
13

\square Alternating Groups
\square Classicat Chevalley Groups
\square Chevalley Groups
\square Classical Steinberg Groups万Steinberg Groups
\square Suzuki Groups
\square Ree Groups and Tits Group*
\square Sporadic Groups
$\square \mathrm{Cyclic}$ Groups

 bas tamion of sumal gruap
\square

M_{12}	M_{22}	M_{23}
95040	443520	10200960

	J (1),J (11)	H
M_{24}	J_{1}	J_{2}
244823040	175560	604800

H/M
J_{3}
50232960

	$\begin{gathered} H S \\ 44352000 \end{gathered}$

	5.иим, пти	
McL	He	Ru
895 128000	400380200	14572614000

[^0]| S= | O'NS,O-S | 13 | -2 | 1 | $F_{\text {F }}, D$ | LyS | $F_{5} \mathrm{E}$ E | M(22) | M (23) | E_{3+} M ${ }^{(24)}{ }^{\prime}$ | F_{2} | F_{1}, M_{1} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Suz | $\mathrm{O}^{\prime} \mathrm{N}$ | Co_{3} | Co_{2} | Co_{1} | HN | Ly | Th | Fi_{22} | Fi_{23} | $F i_{24}^{\prime}$ | B | M |
| 41935540000 | 460115505420 | 49376655000 | 42305521312000 | 4157776305 543360600 | | $\begin{array}{r} 51565179 \\ 604000000 \end{array}$ | $\begin{gathered} 05753943 \\ 387872000 \end{gathered}$ | 6456175165480 | 4049420473 293004600 | 1255205709190 661721292303 | мimamaxe | |

Finite Simple Group (of Order Two), by The Klein Four ${ }^{\text {TM }}$

Musical Fruitcake

Klein Four

Open iTunes to preview, buy, and download music.

View in iTunes
$\$ 9.99$
Genres: Pop, Music
Released: Dec 05, 2005
(9) 2005 Klein Four

Customer Ratings

	Name
1	Power of One
2	Finite Simple Group (of Order Two)
3	Three-Body Problem
4	Just the Four of Us
5	Lemma
6	Calculating
7	XX Potential
88	Confuse Me
9	Universal
10	Contradiction
11	Mathematics Paradise
12	Stefanie (The Ballad of Galois)
13	Musical Fruitcake (Pass it Around)
14	Abandon Soap

Artist
Klein Four

Time	Price	
5:16	\$0.99	View In iTunes
3:00	\$0.99	View In iTunes
3:17	\$0.99	View In iTunes
4:19	\$0.99	View In iTunes *
3:43	$\$ 0.99$	View In iTunes *
4:09	\$0.99	View In iTunes
3:42	\$0.99	View In iTunes
3:41	\$0.99	View In iTunes
4:13	\$0.99	View In iTunes
3:48	\$0.99	View In iTunes
3:51	\$0.99	View In iTunes
4:51	\$0.99	View In iTunes *
2:50	\$0.99	View In iTunes
2:17	\$0.99	View In iTunes

Chopping off subgroup lattices

Going forward, we will iteratively be finding subgroups and quotients of a group G.

It will be convenient to use the following teminology:

"chopping off above $N \unlhd G$ "

"chopping off below $N \unlhd G$ "

Group extensions

Every normal subgroup $N \unlhd G$ canonically defines two sublattices.
■ "everything above": the quotient $Q:=G / N$
■ "everything below": the subgroup $N \unlhd G$.
We say that:
" G is an extension of Q, by N ".
Here are four extensions of V_{4} by C_{2}.

This can be encoded by a sequence

$$
N \stackrel{\iota}{\longrightarrow} G \xrightarrow{\pi} Q
$$

where $\operatorname{Im}(\iota)=\operatorname{Ker}(\pi)$. We say that this sequence is exact at G.

Extensions and short exact sesquences

If we write

$$
1 \longrightarrow N \xrightarrow{\iota} G \xrightarrow{\pi} Q \longrightarrow 1
$$

and specifiy that the sequence is exact at N, G, and Q, then

- exactness at N means ι is injective,
- exactness at G means $\operatorname{Im}(\iota)=\operatorname{Ker}(\pi)$,
- exactness at Q means π is surjective.

We call this a short exact sequence.

More on exact sequences

Exact sequences arise in algebraic topology, homological algebra, differential geometry, etc.
The "curl of a conservative vector field is 0 " can be viewed a short exact sequence:

Here is an exact sequence of length 7 :

Extensions

Finding all extensions of a group Q by N amounts to the following.

The "extension problem"

Find all possibilities for the "middle term" G in a short exact sequence, given N and Q.

We define equivalence of extensions via commutative diagrams related by automorphisms.

Do you see why these three extensions of V_{4} by C_{2} do not differ by an automorphism?

Extension equivalence

There are three nonequivalent extensions of V_{4} by C_{2} that give D_{4} :

$$
1 \longrightarrow C_{2} \xrightarrow{\iota} D_{4} \xrightarrow{\pi} V_{4} \longrightarrow 1
$$

Semidirect products and extensions

A semidirect product $N \rtimes H$ is an extension of H by N.

$$
1 \longrightarrow N \longrightarrow \stackrel{\iota}{\longrightarrow} N \rtimes_{\theta} H \xrightarrow{\pi}
$$

In the subgroup lattice, we can see

- $N \leq G$ at the bottom,
- $H \leq G$ at the bottom,
- $Q=G / N \cong H$ at the top.

Do you see a canonical injection from $Q \cong G / N \cong H$ "down to" $H \leq G$?

Split exact sequences

Definition

A short exact sequence splits if there is a backwards map $\beta: H \rightarrow G$ for which $\pi \circ \beta=\operatorname{ld}_{H}$:

Split exact sequences and semidirect products

Theorem

A short exact sequence $1 \longrightarrow N \xrightarrow{\iota} G \underset{K_{\beta}}{\pi} H \longrightarrow 1$ splits if and only if $G \cong N \rtimes_{\theta} H$.

Proof

" \Leftarrow ": We've already seen this.
" \Rightarrow ": Suppose we have a split exact sequence, and $\beta: H \rightarrow G$ satisfies $\pi \circ \beta=\operatorname{ld}_{H}$.
It suffices to show that $\iota(N) \cong N$ and $\beta(H) \cong H$ are lattice complements.

- Generate G : Take $g \in G$, we will show that $g=n h \in \underbrace{\iota(N)}_{\cong N} \underbrace{\beta(H)}_{\cong H}$.

Let $h=\beta(\pi(g)) \in \beta(H)$.
It suffices to show that $n=g h^{-1}$ is in $\iota(N)=\operatorname{Im}(\iota)=\operatorname{Ker}(\pi)$. By exactness, $\pi(\iota(N))=1_{H}$, and with $\pi \circ \beta=\operatorname{Id}_{H}$, we get

$$
\pi(n)=\pi\left(g h^{-1}\right)=\pi(g) \pi(h)^{-1}=\pi(g) \cdot \pi(\beta(\pi(g)))^{-1}=\pi(g) \cdot \pi(g)^{-1}=1_{H}
$$

hence $n \in \operatorname{Ker}(\pi)$.

Split exact sequences and semidirect products

Theorem

A short exact sequence $1 \longrightarrow N \xrightarrow{\iota} G \underset{\kappa_{\beta}}{\pi} H \longrightarrow 1$ splits if and only if $G \cong N \rtimes_{\theta} H$.

Proof

$" \Leftarrow "$ We've already seen this.
" \Rightarrow ": Suppose we have a split exact sequence, and $\beta: H \rightarrow G$ satisfies $\pi \circ \beta=\mathbf{I d}_{H}$. It suffices to show that $\iota(N) \cong N$ and $\beta(H) \cong H$ are lattice complements.

- Trivial intersection: Suppose $g \in \iota(N) \cap \beta(H)$, and write $g=\beta(h)$.

Since $g \in \iota(N)=\operatorname{Im}(\iota)=\operatorname{Ker}(\pi)$,

$$
1_{H}=\pi(g)=\pi(\beta(h))=(\pi \circ \beta)(h)=\operatorname{Id}_{H}(h)=h .
$$

Therefore, $g=\beta(h)=\beta\left(1_{H}\right)=1_{G}$, and hence $\iota(N) \cap \beta(H)=\left\langle 1_{G}\right\rangle$.

Split exact sequences and direct products

If $G \cong N \times H \cong H \times N$, then G is an extension of N by H, and vice-versa.

$$
1 \longrightarrow N \xrightarrow{\iota_{1}} N \times \underset{\Gamma_{\bar{\beta}_{1}}}{H} \xrightarrow{\pi_{1}} H \longrightarrow 1 \quad 1 \longrightarrow \underset{\Gamma_{\mathcal{B}_{2}}}{\longrightarrow} N \xrightarrow{\iota_{2}} N \longrightarrow 1
$$

This gives a certain "duality" to the subgroup lattices. Here is $D_{6} \cong D_{3} \times C_{2} \cong C_{2} \times D_{3}$.

Split exact sequences and direct products

Another way to capture this duality is to distinguish between "right split" and "left split."

Definition

A short exact sequence is left split if there is a map $\beta: H \rightarrow G$ for which $\alpha \circ \iota=\operatorname{ld}_{N}$:

$$
1 \longrightarrow N \underset{r_{\ldots, \ldots}}{\stackrel{\iota}{\longrightarrow}} G \xrightarrow[K_{K}]{\pi} H \longrightarrow 1
$$

Split exact sequences and direct products

Proposition (HW)

- If a short exact sequence is left split, then it is right split.
"if it's a direct product, then it's a semidirect product"
- If a short exact sequence is right split and G is abelian, then it is left split.
"if an abelian group is a semidirect product, then it's a direct product"

Split exact sequences and direct products

If $G \cong N \times H$, then G is an extension of N by H, and vice-versa.

This gives a certain "duality" to the subgroup lattices. The two abelian groups of order 12 break up as a direct product in three ways:

Central and stem extensions

Definition

An extension $1 \longrightarrow N \xrightarrow{\iota} G \xrightarrow{\pi} Q \longrightarrow 1$ is

- abelian if N is abelian,
- central if $\iota(N) \leq Z(G)$,
- a (central) stem extension if $\iota(N) \leq Z\left(G^{\prime}\right)$.

The group $G=C_{4} \rtimes C_{4}$ is a central (and hence abelian), nonsplit extension of $Q=Q_{8}$ by $N=C_{2}$.

Types of groups extensions

If G is a (non-split) extension of Q by N, we write N.Q.
Here are the different types of extensions and how they are related.

In general, we are interested in understanding how groups can be "built with extensions," via simple groups.

Preview

If G can be broken up into

- abelian extensions, then it is solvable,
- central extensions, then it is nilpotent.

Climbing down subgroups lattices via "simple steps"

Every finite group G has ≥ 1 maximal normal subgroup: $N \unlhd G$ for which G / N is simple.
Let $G_{0}=G$, and $G_{1} \unlhd G$ be any maximal normal subgroup.
Next, pick any maximal $G_{2} \unlhd G_{1}$. Note that G_{2} need not be normal in G.
Iterate this process of taking "simple steps" down the lattice, until we reach the bottom.

Definition

A composition series for G is a "descending subnormal series"

$$
G=G_{0} \unrhd G_{1} \unrhd \cdots \unrhd G_{m}=\langle 1\rangle
$$

where each G_{i} / G_{i+1} is simple. The composition factors are the quotient groups G_{i} / G_{i+1}.

Note that each G_{i} is an extension of G_{i} / G_{i+1} by G_{i+1}.

Big idea

Breaking down a group into composition factors is like factoring a number into primes, or a molecule into atoms. We say:
"Every group can be constructed by 'simple extensions'"

Composition series and simple extensions

Here is an example of a composition series: $G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd G_{3} \unrhd G_{4}=1$.
These are all simple extensions. The composition factors are marked.

They will always be either cyclic or non-abelian simple (e.g., $A_{5}, \mathrm{GL}_{3}\left(\mathbb{Z}_{2}\right), A_{6}, \ldots$).
Preview: A group is "solvable" if they're all cyclic.

Composition series and simple extensions

The group $G=\mathrm{SL}_{2}\left(\mathbb{Z}_{5}\right)$ is not solvable because one of its composition factors is a nonabelian simple group.

Composition series and simple extensions

The group $G=S_{5}$ is not solvable because one of its composition factors is a nonabelian simple group.

Order $=120$

60

24
20
12
10
8
6
5
4
3
2

1

Composition series and simple extensions

How many composition series do the following groups have? What are their factors?

Do you see why we need to work from "top to bottom" to find them?
The following result is analogous to how integers can be factored uniquely into primes.

Jordan-Hölder theorem (upcoming)

Every composition series of a group has the same multiset of composition factors.

Equivalence of composition series

Two composition series

$$
G=G_{0} \unrhd G_{1} \unrhd \cdots \unrhd G_{m}=1, \quad G=H_{0} \unrhd H_{1} \unrhd \cdots \unrhd H_{\ell}=1
$$

are equivalent if $\ell=m$, and they have the same composition factors up to re-ordering. Notice how all of the composition series of the following groups are equivalent:

This is guaranteed by the Jordan-Hölder theorem.

Equivalence of composition series

Jordan-Hölder theorem

Any two composition series for a finite group are equivalent.

Proof

We proceed by induction (base case is trivial). Suppose we have two composition series:

$$
G=G_{0} \unrhd G_{1} \unrhd \cdots \unrhd G_{m}=1, \quad G=H_{0} \unrhd H_{1} \unrhd \cdots \unrhd H_{\ell}=1,
$$

and the result holds for all groups with a composition series of length $\leq m$.
If $G_{1}=H_{1}$, the result follows from the IHOP. So assume otherwise, and let $K_{2}=G_{1} \cap H_{1}$.
Take a composition series of K_{2}.
We now have 4 composition series of G.
Reading left-to-right (see lattice):

- The 1st \& 2nd, and 3rd \& 4th have the same factors by the IHOP.

Climbing down subgroups lattices via "abelian descents"

Suppose $G_{1} \unlhd G$ and G / G_{1} is abelian. We'll call G_{1}, and the act of jumping from G down to G_{1}, as an abelian descent.

Equivalently, G is an abelian extension of G / G_{1} by G_{1}.

Proposition (exercise)

If $N \unlhd G$, then G / N is abelian if and only if $G^{\prime} \leq N$.

In other words, the commutator subgroup G^{\prime} is the maximal abelian descent from G.

Definition

A group G is solvable if can be constructed iteratively by abelian extensions: there exists

$$
G=G_{0} \unrhd G_{1} \unrhd \cdots \unrhd G_{m}=\langle 1\rangle
$$

where each factor G_{i} / G_{i+1} is abelian. (Or equivalently: cyclic.)

Definition

The derived series of group G is the series

$$
G=G^{(0)} \unrhd G^{(1)} \unrhd G^{(2)} \unrhd G^{(3)} \unrhd \cdots, \quad \text { where } G^{(k+1)}=\left(G^{(k)}\right)^{\prime}
$$

Solvability

The derived series of $G=\mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)$ reaches the bottom in 3 steps.

We say that $\mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)$ is solvable, with derived length 3 .
By the correspondence theorem, we can refine the derived series to a composition series.

Solvability in terms of abelian extensions

Key idea

A group is solvable if it can be constructed as a series of abelian extensions.

From top-to-bottom: $G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd G_{3}=\langle 1\rangle$.

Solvability in terms of abelian extensions

Key idea

A group is solvable if it can be constructed as a series of abelian extensions.

From bottom-to-top: $\langle 1\rangle=G_{3} \unlhd G_{2} \unlhd G_{1} \unlhd G_{0}=G$.

Solvability in terms of composition series (simple extensions)

Proposition

A finite group G is solvable if and only if $G^{(m)}=\langle 1\rangle$ for some $m \in \mathbb{Z}$.

Intuitively: if (non-maximal) abelian descents reach the bottom, so will maximal abelian descents.

Proof

" \Rightarrow " is trivial. For " \Leftarrow ", say G has a subnormal series with $G_{m}=\langle 1\rangle$ and abelian factors.
We need to show $G^{(m)}=\langle 1\rangle$, but we'll prove a stronger statement:

$$
G^{(k)} \leq G_{k} \quad \text { for all } \quad k \in \mathbb{N} .
$$

We can do this by induction.
Base case: Since G / G_{1} is abelian $G^{\prime} \leq G_{1}$.
Bonus base case: Since G_{1} / G_{2} is abelian, G_{2} must contain $\left(G_{1}\right)^{\prime}=G^{\prime \prime}$.
Suppose $G^{(k)} \leq G_{k}$ holds; then $G^{(k+1)} \leq G_{k}^{\prime}$.
Since G_{k} / G_{k+1} is abelian, G_{k+1} must contain $G_{k}^{\prime} \geq G^{(k+1)}$.

Solvability and subgroups

Given subgroups H and K of G, define

$$
[H, K]=\langle[h, k] \mid h \in H, k \in K\rangle=\left\langle h k h^{-1} k^{-1} \mid h \in H, k \in K\right\rangle .
$$

Notice that

$$
G^{\prime}=[G, G], \quad G^{\prime \prime}=\left[G^{\prime}, G^{\prime}\right], \quad G^{\prime \prime \prime}=\left[G^{\prime \prime}, G^{\prime \prime}\right], \quad \ldots \quad, \quad G^{(k+1)}=\left[G^{(k)}, G^{(k)}\right] .
$$

Lemma

If $K \leq H \leq G$, then $[K, K] \leq[H, H]$.

Proposition

If G is solvable and $H \leq G$, then H is solvable.

Proof

By the lemma, $H^{\prime}=[H, H] \leq[G, G]=G^{\prime}$, and inductively,

$$
H^{\prime \prime}=\left[H^{\prime}, H^{\prime}\right] \leq\left[G^{\prime}, G^{\prime}\right]=G^{\prime \prime}, \quad \ldots \quad, \quad H^{(k+1)}=\left[H^{(k)}, H^{(k)}\right] \leq\left[G^{(k)}, G^{(k)}\right]=G^{(k+1)} .
$$

Since G is solvable, $G^{(m)}=\langle 1\rangle$ for some $m \in \mathbb{N}$.
Solvability of H follows immediately from $H^{(m)} \leq G^{(m)}=\langle 1\rangle$.

Solvability and quotients

Proposition

If G is solvable and $N \unlhd G$, then G / N is solvable.

Proof

Let $\pi: G \rightarrow G / N$. The commutator of the quotient is the quotient of the commutator:

$$
\pi([x, y])=\pi\left(x y x^{-1} y^{-1}\right)=x y x^{-1} y^{-1} N=[x N, y N] .
$$

Therefore, $(G / N)^{\prime}=\pi\left(G^{\prime}\right)$, and $(G / N)^{(k)}=\pi\left(G^{(k)}\right)$.
Since G is solvable, $G^{(m)}=\langle 1\rangle$ for some $m \in \mathbb{N}$.
Therefore, $(G / N)^{(m)}=N / N$, and hence G / N is solvable.

The proof above suggests that commutators behave well under homomorphisms.

Exercise

Suppose $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism. Then:
(i) $\phi([h, k])=[\phi(h), \phi(k)]$, for all $h, k \in G_{1}$.
(ii) $\phi([H, K])=[\phi(H), \phi(K)]$, for all $H, K \leq G_{1}$.

Solvability

Theorem

Suppose $N \unlhd G$. Then G is solvable if and only if G / N and N are solvable.

Proof

Use the correspondence theorem to create a composition series of G :

Solvability and extensions: abelian vs. cyclic

Big ideas

Composition factors are like "atoms" that groups are built with. They are either cyclic, or nonabelian simple groups.

A group G solvable if

- we can climb down the subgroup lattice using "maximal abelian descents"
- the (minimal) "simple steps" down the subgroup lattice are all cyclic.

Theorem

The following groups are solvable.

- p-groups (we'll prove soon)
- All groups of order $p^{n} q^{m}$, for primes p and q (Burnside)
- Groups of order $p^{n} \cdot m(p \nmid m)$ that have a subgroup of order m.
- Groups of odd order (Feit-Thompson; 250+ page proof).

■ Groups for which all 2-generator subgroups are solvable (Thompson; 475 page proof that uses the Feit-Thompson result).

Central ascents

Starting from any normal subgroup $N \unlhd G$, we can ask:
"if we quotient by N (chop off the lattice below), what subgroup Z / N is the center?" We'll give this a memorable name, as we did for (maximal) abelian descents.

Definition

If $N \unlhd G$, then $Z \leq G$ is a

- central ascent from N if $Z / N \leq Z(G / N)$,
- maximal central ascent from N if $Z / N=Z(G / N)$.

By iterating this process from $Z_{0}=\langle 1\rangle$, we can (attempt to) climb up a subgroup lattice.

Nilpotent groups and the ascending central series

Definition

Let G be a finite group, and let $Z_{0}=\langle 1\rangle$ and $Z_{1}=Z(G)$. The series

$$
\langle 1\rangle=Z_{0} \unlhd Z_{1} \unlhd Z_{2} \unlhd \cdots, \quad \text { where } \quad Z_{k+1} / Z_{k}=Z\left(G / Z_{k}\right)
$$

is the ascending central series of G, and if $Z_{m}=G$ for some $m \in \mathbb{N}$, then G is nilpotent. The minimal m is the nilpotency class.

Big idea

The subgroup Z_{k+1} is the maximal central ascent from Z_{k}.

Nilpotent groups and central extensions

Proposition

If G is nilpotent, then it is solvable.

Proof

The ascending central series $\langle 1\rangle=Z_{0} \unlhd Z_{1} \unlhd \cdots \unlhd Z_{m}=G$ is a normal (and hence subnormal) series of G. (Why?)

Since Z_{k+1} / Z_{k} is the center of the group G / Z_{k}, it is abelian.
Since G has a subnormal series with abelian factors, it is solvable.

One easy way to remember this
"it's easier to fall down than to climb up."

Corollary

Every p-group is nilpotent, and hence solvable.

Proof

Since p-groups have nontrivial centers, $Z_{i} \leq Z_{i+1}$ for each i.

Nilpotent groups

Starting from $N \unlhd G$, we can ask:
How can we characterize the central ascents algebraically? Which one is maximal?

Central series lemma

If $N \leq H \leq G$ and $N \unlhd G$, then

$$
H / N \leq Z(G / N) \quad \text { if and only if } \quad[G, H] \leq N
$$

In particular, the maximal central ascent from N is: $Z=\{z \in G \mid[g, z] \in N, \forall g \in G\}$.

Proof

If H / N is in the center of G / N, then for all $h \in H$ and $g \in G$

$$
g N \cdot h N=h N \cdot g N \quad \Longleftrightarrow \quad g h g^{-1} h^{-1} N=N \quad \Longleftrightarrow \quad[g, h] \in N \quad \Longleftrightarrow \quad[G, H] \leq N .
$$

Definition

If $N \unlhd G$, then $L=[G, N]$ is a maximal central descent from N. Intermediate subgroups $L \leq K \leq N$ are central descents.

Central ascents

Central descents

The descending central series

To take "maximal central descents" down a subgroup lattice: at each L_{k}, look down and ask " what's the smallest subgroup L_{k+1} where we can chop off so G / L_{k} remains central?'

We call this the descending central series of G.

Another way to climb down a subgroup lattice

Definition

The descending central series is the normal series

$$
G=L_{0} \unrhd L_{1} \unrhd L_{2} \unrhd \cdots, \quad L_{1}=\left[G, L_{0}\right], L_{2}=\left[G, L_{1}\right], \ldots, L_{k+1}=\left[G, L_{k}\right] .
$$

It is "harder" to climb down a subgroup lattice in this manner than via the derived series:

$$
G \unrhd G^{\prime} \unrhd G^{\prime \prime} \unrhd \cdots, \quad G^{\prime}=[G, G], G^{\prime \prime}=\left[G^{\prime}, G^{\prime}\right], \ldots, G_{(k+1)}=\left[G^{(k)}, G^{(k)}\right] .
$$

Proposition

For any group G, we have $G^{(k)} \leq L_{k}$.

Proof

We start with $G^{(0)}=L_{0}=G$ and $G^{1}=L_{1}=[G, G]$. However, at the second step,

$$
G^{\prime \prime}=\left[G^{\prime}, G^{\prime}\right] \leq\left[G, G^{\prime}\right]=\left[G, L_{1}\right]=L_{2},
$$

with the inequality due to $G^{\prime} \leq G$. Inductively, if $G^{(k-1)} \leq L_{k-1}$, then

$$
G^{(k)}=\left[G^{(k-1)}, G^{(k-1)}\right] \leq\left[G, L_{k-1}\right]=L_{k},
$$

with the inequality holding because $G^{(k-1)} \leq G$ and $G^{(k-1)} \leq L_{k-1}$.

Chutes and Ladders diagrams

Define the Chutes and Ladders diagram of G from its lattice by adding, for each $N \unlhd G$:

- a red arrow for each maximal central descent $N \backslash L$, i.e., $L=[G, N]$,
- a blue arrow for each maximal central ascent, N / Z, i.e., $Z / N=Z(G / N)$.

The ascending and descending central series can be read right off this diagram!

The chutes and ladders diagram of a non-nilpotent group

Order

Ascending vs. descending central series
The ascending and descending central series differ for 6 of 9 nonabelian groups of order 16 . This is the smallest $|G|$ for which this happens.

Key idea (that we'll prove)

The ascending and descending central series have the same length.

Monotonicity of central ascents and descents

Proposition

Let $N \leq H \leq G$ be a chain of normal subgroups. Then

1. If $Z(G / N)=Z_{1} / N$ and $Z(G / H)=Z_{2} / H$, then $Z_{1} \leq Z_{2}$.
2. $[G, N] \leq[G, H]$.

Proof of (i)

For any $z \in Z_{1}$, the coset $z N$ is central in G / N, which means that, for all $g \in G$,

$$
\begin{array}{rlr}
z N g N=g N z N & \Longleftrightarrow[z, g] \leq N & \\
& \Longleftrightarrow[z, g] \leq H & \\
& \Longleftrightarrow z y \text { by the central series lemma } \\
& \Longleftrightarrow z H g H=g H z H & \\
& \Longleftrightarrow z H \in Z(G) \text { by central series lemma } \\
& \Longleftrightarrow z \in Z_{2} & \\
\text { by definition of } Z(G / H) \\
& & \text { by definition; } Z(G / H)=Z_{2} / H .
\end{array}
$$

The crooked ladder theorem

Let G be a finite group, and suppose that either of the following hold:

1. The descending central series reaches the bottom: $L_{n-1} \geqslant L_{n}=\langle 1\rangle$.
2. The ascending central series reaches the top: $Z_{n-1} \lesseqgtr Z_{n}=G$.

Then for all $k=0, \ldots, n$,

$$
L_{n-k} \leq Z_{k} .
$$

The crooked ladder theorem

Let G be a finite group, and suppose that either of the following hold:
(i) The descending central series reaches the bottom: $L_{n-1} \geqslant L_{n}=\langle 1\rangle$.
(ii) The ascending central series reaches the top: $Z_{n-1} \lesseqgtr Z_{n}=G$.

Then for all $k=0, \ldots, n$,

$$
L_{n-k} \leq Z_{k}
$$

Proof of (i); Part (ii) is analogous (HW)

Induct on k. The base case is trivial: $L_{n}=Z_{0}=\langle 1\rangle$.
Inductive step:

Part (ii)

Note that L_{n-k-1} is a central ascent from $L_{n-k}: \quad \overbrace{L_{n-k} \leq L_{n-k-1} \leq \underbrace{Z \leq Z_{k+1}}_{\text {monotonicity }}}^{L_{n+k-1 / L_{n-k} \in Z\left(G / L_{n-k}\right)}}$.

The ascending and descending central series have the same length

Corollary

The ascending central series reaches $Z_{n}=G$ iff the descending central series reaches $L_{m}=\langle 1\rangle$. If this happens, their lengths are the same.

Proof

Ascending vs. descending central series

Here's a familiar example, higlighting the "crooked ladder property,"

$$
L_{n-k} \leq Z_{k}, \quad \text { or equivalently, } L_{k} \leq Z_{n-k}
$$

Products of nilpotent groups are nilpotent

Lemma

If $G=H \times K$, then $L_{n}(G)=L_{n}(H) \times L_{n}(K)$ for all n.

Proof

The proof is by induction. The base case is easy:

$$
G=L_{0}(G)=L_{0}(H) \times L_{0}(K)=H \times K
$$

Next, suppose that $L_{k}(G)=L_{k}(H) \times L_{k}(K)$. Then

$$
\begin{aligned}
L_{k+1}(G)=\left[H \times K, L_{k}(H \times K)\right] & =\left[H \times K, L_{k}(H) \times L_{k}(K)\right] \\
& =\left[H, L_{k}(H)\right] \times\left[K, L_{k}(K)\right] \\
& =L_{k+1}(H) \times L_{k+1}(K),
\end{aligned}
$$

and the result follows inductively.

Corollary

If H and K are nilpotent, then so is $G=H \times K$.

Normalizers grow in nilpotent groups

In the ascending central series, each Z_{i+1} was defined implictly, via $Z_{i+1} / Z_{i}=Z\left(G / Z_{i}\right)$.
Since Z_{i+1} is the maximal central ascent from Z_{i}, we have an explicit formula:

$$
Z_{i+1}=\left\{x \in G \mid[x, g] \in Z_{i}, \forall g \in G\right\}=\left\{x \in G \mid x Z_{i} g Z_{i}=g Z_{i} x Z_{i}, \forall g \in G\right\}
$$

Proposition

Subgroups of a nilpotent group G cannot be fully unnormal: if $H \lesseqgtr G$, then $H \lesseqgtr N_{G}(H)$.

Proof

Take the maximal Z_{k} containing H. We'll show that $N_{G}(H)$ contains Z_{k+1}.
Pick some $x \in Z_{k+1}$. (Need to show it normalizes H.)
For all $g \in G$, we have $[x, g] \in Z_{k}$.
Thus, $[x, h]=x h x^{-1} h^{-1} \in Z_{k} \leq H, \quad$ for all $h \in H$.
Since $x h x^{-1} h^{-1} \in H$, then $x h x^{-1} \in H$.

Thus, $x \in N_{G}(H)$.

Sylow p-subgroups of nilpotent groups

Proposition

A finite group is nilpotent iff it is the internal direct product of its Sylow p-subgroups.

Proof

" \Leftarrow ": by previous lemma.
" \Rightarrow ": Let $P \in \operatorname{Syl}_{p}(G)$ be a Sylow p-subgroup.
Then "normalizers must grow", but also $N_{G}\left(N_{G}(P)\right)=N_{G}(P)$.
Thus $N_{G}(P)=G$, so $P \unlhd G$ is the unique Sylow p-subgroup of G.
Let P_{1}, \ldots, P_{k} be the distinct Sylow p_{i}-subgroups of G. We need to verify:

1. $G=P_{1} P_{2} \cdots P_{k}$.
2. each $P_{i} \unlhd G$.
3. each P_{i} trivially intersects

$$
Q_{i}:=\left\langle P_{j} \mid j \neq i\right\rangle .
$$

If $g \in P_{i} \cap Q_{i}$, then $|g|=p_{i}^{\ell}$ divides $\prod_{j \neq i} p_{j}^{d_{j}}$, which is co-prime to p_{i}.

Central series

Definition

A central series of a group G is a normal series

$$
\langle 1\rangle=C_{0} \unlhd C_{1} \unlhd \cdots \unlhd C_{m}=G, \quad \text { such that } \quad C_{k+1} / C_{k} \leq Z\left(G / C_{k}\right)
$$

Equivalently, G / C_{k} is a central extension of G / C_{k+1} by C_{k+1} / C_{k}.

$$
1 \longrightarrow C_{k+1} / C_{k} \xrightarrow{\iota_{k}} G / C_{k} \xrightarrow{\pi_{k}} G / C_{k+1} \longrightarrow 1
$$

Central series

Remark

The ascending central series of a nilpotent group G is a normal series

$$
\langle 1\rangle=Z_{0} \unlhd Z_{1} \unlhd \cdots \unlhd Z_{m}=G, \quad \text { such that } \quad Z_{k+1} / Z_{k}=Z\left(G / Z_{k}\right) .
$$

Equivalently, G / Z_{k} is the maximal central extension of $G / Z_{k+1}\left(\right.$ by $\left.Z_{k+1} / Z_{k}\right)$.

$$
1 \longrightarrow Z_{k+1} / Z_{k} \xrightarrow{\iota_{k}} G / Z_{k} \xrightarrow{\pi_{k}} G / Z_{k+1} \longrightarrow 1
$$

Central series

Remark

The descending central series of a group G is a normal series

$$
G=L_{0} \unrhd L_{1} \unrhd \cdots \unrhd L_{m}=G, \quad \text { such that } \quad L_{k} / L_{k+1} \leq Z\left(G / L_{k+1}\right) .
$$

Equivalently, G / L_{k+1} is a central extension of G / C_{k} by L_{k} / L_{k+1}.

$$
1 \longrightarrow L_{k} / L_{k+1} \xrightarrow{\iota_{k}} G / L_{k+1} \xrightarrow{\pi_{k}} G / L_{k} \longrightarrow 1
$$

Solvability and nilpotency in terms of extensions

Summary

- Every finite group can be constructed from extensions of simple groups.
- Solvable groups can be constructed from abelian extensions.
- Nilpotent groups can be constructed from central extensions.

Summary of nilpotent groups

Theorem

A finite group G is nilpotent if any of the following conditions hold:

1. $Z_{n}=G$ for some n ("the ascending central series reaches the top")
2. $L_{m}=\langle 1\rangle$ for some m, ("descending central series reaches the bottom")
3. $H \lesseqgtr N_{G}(H)$ for all proper subgroups, ("no fully unnormal subgroups")
4. All Sylow p-subgroups are normal.
5. G is the direct product of its Sylow p-subgroups.
6. Every maximal subgroup of G is normal.

[^0]:

