
Chapter 8: Rings

Matthew Macauley

Department of Mathematical Sciences
Clemson University

http://www.math.clemson.edu/~macaule/

Math 4120/4130, Visual Algebra

M. Macauley (Clemson) Chapter 8: Rings Math 4120/4130, Visual Algebra 1 / 86

mailto:macaule@clemson.edu
http://www.math.clemson.edu/
http://www.clemson.edu/
http://www.math.clemson.edu/~macaule/
mailto:macaule@clemson.edu


What is a ring?

A group is a set with a binary operation, satisfying a few basic properties.

Many algebraic structures (numbers, matrices, functions) have two binary operations.

Definition
A ring is an additive (abelian) group R with an additional associative binary operation
(multiplication), satisfying the distributive law:

x(y + z) = xy + xz and (y + z)x = yx + zx ∀x , y , z ∈ R .

Remarks
There need not be multiplicative inverses.

Multiplication need not be commutative (it may happen that xy 6= yx).

A few more definitions
If xy = yx for all x , y ∈ R, then R is commutative.

If R has a multiplicative identity 1 = 1R 6= 0, we say that “R has identity” or “unity”, or “R
is a ring with 1.”
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The four rings of order 6
The additive group Z6 is a ring, where multiplication is defined modulo 6.

+
0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

1

2

3

4

5

0

2

3

4

5

0

1

3

4

5

0

1

2

4

5

0

1

2

3

5

0

1

2

3

4

×
0

1

2

3

4

5

0 1 2 3 4 5

0

0

0

0

0

0

0

1

2

3

4

5

0

2

4

0

2

4

0

3

0

3

0

3

0

4

2

0

4

2

0

5

4

3

2

1

However, this is not the only way to add a ring structure to (Z6,+).
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These last three rings do not have unity. We can view them as subrings:

〈6〉 ∼= 6Z6 ⊆ Z36, 〈2〉 ∼= 2Z6 ⊆ Z12, 〈3〉 ∼= 3Z6 ⊆ Z18.
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Subgroups, subrings, and ideals

If an (additive) subgroup of S ⊆ R is closed under multiplication, it is a subring.

The analogue of normal subgroups for rings are (two-sided) ideals.

Definition
A subring I ⊆ R is a left ideal if

rx ∈ I for all r ∈ R and x ∈ I .

Right ideals, and two-sided ideals are defined similarly.

If R is commutative, then all left (or right) ideals are two-sided.

We use the term ideal and two-sided ideal synonymously, and write I E R.

Examples
In the ring R = Z[x ] of polynomials over Z:

the subgroup generated by 2 is 〈2〉 = 2Z.
the ideal generated by 2 is

(2) :=
{
2f (x) | f ∈ Z[x ]

}
=
{
2anxn + · · ·+ 2a1x + 2a0 | f ∈ Z[x ]

}
.
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A familiar example
Consider the ring R = Z23 =

{
ab | a, b ∈ Z3

}
.

We know that the following map is a group homomorphism:

φ : Z23 ! Z3, φ(ab) = b.

The table below (right) shows it’s also a ring homomorphism.

Do you see why 〈10〉 is an ideal?

Z23 = 〈10, 01〉

〈10〉 〈01〉 〈11〉 〈12〉

〈00〉
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Different types of substructures

Let’s consider two other subgroups of R = Z23.

The subgroup 〈11〉 is a subring but not an ideal.

The subgroup 〈12〉 is a not even a subring.

Z23 = 〈10, 01〉
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Subring lattices

Like we did with groups, we can create the subring lattice of a (finite) ring.

Start with the subgroup lattice, and color-code the subgroups of R as follows:

1. Blue: an ideal,

2. Red: a subring that is not an ideal,

3. faded: a subgroup that is not subring.

Technically, we shouldn’t have non-subrings, but it’s nice to include them.

Z32

〈010,001〉 〈100,001〉 〈100,010〉 〈100,011〉 〈010,101〉 〈110,001〉 〈110,011〉

〈100〉 〈010〉 〈001〉 〈011〉 〈101〉 〈110〉 〈111〉

〈000〉

Z23

〈10〉 〈11〉 〈01〉 〈12〉

〈00〉
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Ideals generated by sets

Definition
The left ideal generated by a set X ⊂ R is defined as:

(X ) :=
⋂ {

I : I is a left ideal s.t. X ⊆ I ⊆ R
}
.

This is the smallest left ideal containing X .

There are analogous definitions by replacing “left” with “right” or “two-sided”.

Recall the two ways to define the subgroup 〈X 〉 generated by a subset X ⊆ G :

“Bottom up”: As the set of all finite products of elements in X ;

“Top down”: As the intersection of all subgroups containing X .

Proposition (HW)

Let R be a ring with 1. The (left, right, two-sided) ideal generated by X ⊆ R is:

Left:
{
r1x1 + · · ·+ rnxn : n ∈ N, ri ∈ R, xi ∈ X

}
,

Right:
{
x1r1 + · · ·+ xnrn : n ∈ N, ri ∈ R, xi ∈ X

}
,

Two-sided:
{
r1x1s1 + · · ·+ rnxnsn : n ∈ N, ri , si ∈ R, xi ∈ X

}
.
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Ideals in rings without unity

Proposition
Let R be a commutative rng (=need not have unity). Then{

r1x1 + · · ·+ rnxn | n ∈ N, ri ∈ R, xi ∈ X
}
⊆

⋂
X⊆IαER

Iα.

Perhaps surprisingly, equality above need not hold!

Consider the following polynomial ring:

R = 2Z[x ] =
{
a0 + a1x + · · ·+ anxn | ai ∈ 2Z, n ∈ N

}
=
{
2c0 + 2c1x + · · ·+ 2cnxn | ci ∈ Z, n ∈ N

}
.

Since the ideal (2) contains 2 by definition,{
2f (x) | f (x) ∈ 2Z[x ]

}
=
{
4c0 + 4c1x + · · ·+ 4cnxn | ci ∈ Z, n ∈ N

}
( (2).

Similarly, the ideal (2, 2x) contains 2 and 2x , and so{
2f (x) + 2xg(x) | f (x) ∈ 2Z[x ]

}
=
{
4c0 + 4c1x + · · ·+ 4cnxn | ci ∈ Z, n ∈ N

}
( (2, 2x).
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Ideals generated by sets

As we did with groups, if S = {x}, we can write (x) rather than ({x}), etc.

Let’s see some examples of ideals in R = Z[x ].

(x) =
{
xf (x) | f ∈ Z[x ]

}
=
{
anxn + · · ·+ a1x | ai ∈ Z

}
.

(2) =
{
2f (x) | f ∈ Z[x ]

}
=
{
2anxn + · · ·+ 2a1x + 2a0 | ai ∈ Z

}
.

(x , 2) =
{
xf (x) + 2g(x) | f , g ∈ Z[x ]

}
=
{
anxn + · · ·+ a1x + 2a0 | ai ∈ Z

}
.

Notice that we have

(x) ( (x , 2) ( R, and (2) ( (x , 2) ( R.

The ideal (x , 2) is said to be maximal, because there is nothing “between” it and R.

Question
How different would these ideals be in the ring R = Q[x ]?
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Some rings of order 4
There are 3 rings whose additive group is Z4.

Their multiplicative structures are shown below.
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Some rings of order 4
There are 8 rings whose additive group is Z22.

Three have unity: F4, Z22, and 〈I , 1〉.
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Some rings of order 4
There are 8 rings whose additive group is Z22.

Three are commutative but without unity.
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Some rings of order 4
There are two noncommutative rings of order 4.

Each is the “opposite ring” of the other.
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We’ll write non 2-sided ideals in purple, and write

(x〉 for a left ideal that is not a right ideal

〈x) for a right ideal that is not a left ideal.
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Finite rings

In general, we’ll be more interested in infinite rings.

However, let’s say a few words about finite rings, mostly for fun.

n 1 2 3 4 5 6 7 8 9 10 11 12 16 32
# groups 1 1 1 2 1 2 1 5 2 2 1 5 14 51
# rings w/ 1 1 1 1 4 1 1 1 11 4 1 1 4 50 208
# rings 1 2 2 11 2 4 2 52 11 4 2 22 390 > 18590
# non-comm 0 0 0 2 0 0 0 18 2 0 0 18 228 ?

Small noncommutative rings with 1 are “rare”. There are

13 of size 16

one each of sizes 8, 24, and 27

and no others of order less than 32.

For distinct primes p and q, (p ≥ 3), there are the following number of algebraic structures:

n p p2 p3 pq p2q
# groups 1 2 5 2 ≤ 5
# rings 2 11 3p + 50 4 22

Going forward, most finite rings we’ll typically encounter are Zn and finite fields.
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Some infinite rings

Examples
1. Z ⊂ Q ⊂ R ⊂ C are all commutative rings with 1.

2. For any ring R with 1, the set Mn(R) of n× n matrices over R is a ring. It has identity
1Mn(R) = In iff R has 1.

3. For any ring R, the set of functions F = {f : R ! R} is a ring by defining

(f + g)(r) = f (r) + g(r), (fg)(r) = f (r)g(r) .

4. The set S = 2Z is a subring of Z but without unity.

5. S =

{[
a 0
0 0

]
: a ∈ R

}
is a subring of R = M2(R). However, note that

1R =

[
1 0
0 1

]
, but 1S =

[
1 0
0 0

]
.

6. If R is a ring and x a variable, then the set

R[x ] =
{
anxn + · · ·+ a1x + a0 | ai ∈ R

}
is called the polynomial ring over R.
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More examples of ideals

Let’s see some examples of subgroups, subrings, and ideals in R = Z[x ].

subgroups that are not subrings:

〈x〉 =
{
nx | n ∈ Z

}
,

〈
1, x , x2

〉
=
{
a0 + a1x + a2x2 | ai ∈ Z

}
.

subrings that are not ideals:

〈2〉 = 2Z,
〈
1, x2, x4, . . .

〉
=
{
a0 + a2x2 + · · ·+ a2kx2k | ai ∈ Z

}
.

ideals:

(2) =
{
2f (x) | f ∈ Z[x ]

}
=
{
2anxn + · · ·+ 2a1x + 2a0 | ai ∈ Z

}
,

(x) =
{
xf (x) | f ∈ Z[x ]

}
=
{
anxn + · · ·+ a1x | ai ∈ Z

}
,

(x , 2) =
{
xf (x) + 2g(x) | f , g ∈ Z[x ]

}
=
{
anxn + · · ·+ a1x + 2a0 | ai ∈ Z

}
.

In R = M2(R):

I =

{[
a 0
c 0

]
: a, c ∈ R

}
is a left, but not right ideal of R.

The set Sym2(R) of symmetric matrices is a subgroup, but not a subring.
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Another example: the Hamiltonians

Recall the (unit) quaternion group:

Q8 =
〈
i , j , k | i2 = j2 = k2 = −1, ij = k

〉
.

1

i

−1

−i

j

−k

−j

k

Allowing addition makes them into a ring H, called the quaternions, or Hamiltonians:

H =
{
a + bi + cj + dk | a, b, c, d ∈ R

}
.

The set H is isomorphic to a subring of M4(R), the real-valued 4× 4 matrices:

H ∼=


a −b −c −d
b a −d c
c d a −b
d −c b a

 : a, b, c, d ∈ R

 ⊆ M4(R) .

Formally, we have an embedding φ : H ↪! M4(R) where

φ(i) =

[
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
, φ(j) =

[
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
, φ(k) =

[
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

]
.

Just like with groups, we say that H is represented by a set of matrices.
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Units
Informally, a ring is a set where we can add, substract, multiply, but not necessarily divide.

Definition
A unit is any u ∈ R that has a multiplicative inverse: some v ∈ R such that uv = vu = 1.

Let U(R) be the set (a multiplicative group) of units of R.

Proposition
If an ideal I of R contains a unit, then I = R.

Proof

Consider a unit u ∈ I . Then for any r ∈ R: r = (ru−1)u ∈ I , hence I = R. �

Examples
1. Let R = Z. The units are U(R) = {−1, 1}.
2. Let R = Z10. Then 7 is a unit (and 7−1 = 3) because 7 · 3 = 1. But 2 is not a unit.

3. Let R = Zn. A nonzero k ∈ Zn is a unit if gcd(n, k) = 1.

4. The units of M2(R) are the invertible matrices.
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Zero divisors

Definition
An element x ∈ R is a left zero divisor if xy = 0 for some y 6= 0. (Right zero divisors are
defined analogously.)

Examples
1. There are no (nonzero) zero divisors of R = Z.
2. The zero divisors of R = Z10 are 0, 2, 4, 5, 6, 8.

3. A nonzero k ∈ Zn is a zero divisor gcd(n, k) > 1.

4. The ring R = M2(R) has zero divisors, such as:[
1 −2
−2 4

] [
6 2
3 1

]
=

[
0 0
0 0

]

One particular type of zero divisor will be important later.

Definition
An element a in a ring R is nilpotent if an = 0 for some n ∈ N.
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Group rings
A rich family of examples of rings can be constructed from multiplicative groups.

Let G be a finite (multiplicative) group, and R a commutative ring (usually, Z, R, or C).

The group ring RG is the set of formal linear combinations of groups elements with
coefficients from R. That is,

RG :=
{
a1g1 + · · ·+ angn | ai ∈ R, gi ∈ G

}
,

where multiplication is defined in the “obvious” way.

For example, let R = Z and G = D4, and take x = r + r2 − 3f and y = −5r2 + rf in ZD4.

Their sum is
x + y = r − 4r2 − 3f + rf ,

and their product is

xy = (r + r2 − 3f )(−5r2 + rf ) = r(−5r2 + rf ) + r2(−5r2 + rf )− 3f (−5r2 + rf )

= −5r3 + r2f − 5r4 + r3f + 15fr2 − 3frf = −5− 8r3 + 16r2f + r3f .

Tip
Think of ZD4 as linear combinations of the “basis vectors”{

e1, er , er2 , er3 , ef , erf , er2f , er3f
}
.
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Group rings

For another example, consider the group ring RQ8. Elements are formal sums

a + bi + cj + dk + e(−1) + f (−i) + g(−j) + h(−k), a, . . . , h ∈ R.

Every choice of coefficients gives a different element in RQ8!

For example, if all coefficients are zero except a = e = 1, we get

1 + (−1) 6= 0 ∈ RQ8 (because “e1 + e−1 6= 0”).

In contrast, in the Hamiltonians, H =
{
a + bi + cj + dk | a, b, c, d ∈ R

}
,

1 + (−1) = [1 + 0i + 0j + 0k] + [(−1) + 0i + 0j + 0k] = (1− 1) + 0i + 0j + 0k = 0.

Therefore, H and RQ8 are different rings.

Remarks
If g ∈ G has finite order |g| = k > 1, then RG always has zero divisors:

(1− g)(1 + g + · · ·+ gk−1) = 1− gk = 1− 1 = 0.

RG contains a subring isomorphic to R.

the group of units U(RG) contains a subgroup isomorphic to G .
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Fields and division rings

Definition
If every nonzero element of R has a multiplicative inverse, then R is a division ring. It is a

field if R is commutative,

skew field if R is not commutative.

Examples of fields we’ve seen include Q, R, C, and Zp for prime p.

The Hamiltonians H are a skew field.

Definition
A quadratic field is any field of the form

Q(
√
m) =

{
r + s

√
m | r , s ∈ Q

}
,

where m 6= 0, 1 is a square-free integer. We say “Q adjoin
√
m.”

This is a field because:

(r + s
√
m)(r − s

√
m) = r2 − s2m, (r + s

√
m)−1 =

r − s
√
m

r2 − s2m
.
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Integral domains

Definition
An integral domain is a commutative ring with 1 and with no (nonzero) zero divisors.

An integral domain is a “field without inverses”.

A field is just a commutative division ring. Moreover:

fields ( division rings, fields ( integral domains.

Examples
Rings that are not integral domains: Zn (composite n), 2Z, Mn(R), Z× Z, H.

Integral domains that are not fields Z, Z[x ], R[x ], R[[x ]] (formal power series).

The ring “Z adjoin
√
m,” defined as

Z[
√
m] =

{
a + b

√
m | a, b ∈ Z

}
,

is an integral domain, but not a field.
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Cancellation

When doing basic algebra, we often take for granted basic properties such as cancellation:

ax = ay =⇒ x = y .

This need not hold in all rings!

Examples where cancellation fails
In Z6, note that 2 = 2 · 1 = 2 · 4, but 1 6= 4.

In M2(R), note that
[
1 0
0 0

]
=

[
0 1
0 0

] [
4 1
1 0

]
=

[
0 1
0 0

] [
1 2
1 0

]
.

However, everything works fine as long as there aren’t any (nonzero) zero divisors.

Proposition
Let R be an integral domain and a 6= 0. If ax = ay for some x , y ∈ R, then x = y .

Proof
If ax = ay , then ax − ay = a(x − y) = 0.

Since a 6= 0 and R has no (nonzero) zero divisors, then x − y = 0. �
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Finite integral domains

Remark

If R is an integral domain and 0 6= a ∈ R and k ∈ N, then ak 6= 0. �

Theorem
Every finite integral domain is a field.

Proof
Suppose R is a finite integral domain and 0 6= a ∈ R. It suffices to show that a has a
multiplicative inverse.

Consider the infinite sequence a, a2, a3, a4, . . . , which must repeat.

Find i > j with ai = aj , which means that

0 = ai − aj = aj (ai−j − 1).

Since R is an integral domain and aj 6= 0, then ai−j = 1.

Thus, a · ai−j−1 = 1. �
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Ideals and quotients
Since an ideal I of R is an additive subgroup (and hence normal):

R/I =
{
x + I | x ∈ R

}
is the set of cosets of I in R;

R/I is a quotient group; with the binary operation (addition) defined as

(x + I ) + (y + I ) := x + y + I .

It turns out that if I is also a two-sided ideal, then we can make R/I into a ring.

Proposition
If I ⊆ R is a (two-sided) ideal, then R/I is a ring (called a quotient ring), where
multiplication is defined by

(x + I )(y + I ) := xy + I .

Proof
We need to show this is well-defined. Suppose x + I = r + I and y + I = s + I . This means
that x − r ∈ I and y − s ∈ I .

It suffices to show that xy + I = rs + I , or equivalently, xy − rs ∈ I :

xy − rs = xy − ry + ry − rs = (x − r)︸ ︷︷ ︸
∈I

y + r (y − s)︸ ︷︷ ︸
∈I

∈ I .
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Group theory
normal subgroups are characterized by being invariant under conjugation:

H ≤ G is normal iff ghg−1 ∈ H for all g ∈ G , h ∈ H.

The quotient G/N exists iff N is a normal: N E G

A homomorphism is a structure-preserving map: f (x ∗ y) = f (x) ∗ f (y).

The kernel of a homomorphism is normal: Ker(φ)E G .

If N E G , there is a natural quotient π : G ! G/N, π(g) = gN.

There are four isomorphism theorems.

Ring theory
(left) ideals of rings are characterized by being invariant under (left) multiplication:

I ⊆ R is a (left) ideal iff rx ∈ I for all r ∈ R, x ∈ I .

The quotient ring R/I exists iff I is a two-sided ideal: I E R.

A homomorphism is structure-preserving: f (x+y) = f (x)+f (y), f (xy) = f (x)f (y).

The kernel of a homomorphism is a two-sided ideal: Ker(φ)E R.

If I E R, there is a natural quotient π : R ! R/I , π(r) = r + I .

There are four isomorphism theorems.
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Ring homomorphisms

Definition
A ring homomorphism is a function f : R ! S satisfying

f (x + y) = f (x) + f (y) and f (xy) = f (x)f (y) for all x , y ∈ R.

A ring isomorphism is a homomorphism that is bijective.

The kernel f : R ! S is the set Ker(f ) := {x ∈ R | f (x) = 0}.

Examples
1. The ring homomorphism φ : Z! Zn sending k 7! k (mod n) has Ker(φ) = nZ.
2. For a fixed real number α ∈ R, the “evaluation function”

φ : R[x ] −! R , φ : p(x) 7−! p(α)

is a homomorphism. The kernel consists of all polynomials that have α as a root.

3. The following is a homomorphism, for the ideal I = (x2 + x + 1) in F2[x ]:

φ : F2[x ] −! F2[x ]/I , f (x) 7−! f (x) + I .
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Isomoprhism theorem prerequisites

Proposition
The kernel of a ring homomorphism φ : R ! S is a two-sided ideal.

Proof
We know that Ker(φ) is an additive subgroup of R. We must show that it’s an ideal.

Left ideal: Let k ∈ Ker(φ) and r ∈ R. Then

φ(rk) = φ(r)φ(k) = φ(r) · 0 = 0 =⇒ rk ∈ Ker(φ). X

Showing that Ker(φ) is a right ideal is analogous. �

Proposition
The sum S + I = {s + i | s ∈ S, i ∈ I} of a sum and an ideal is a subring of R.

Proof
S + I is an additive subgroup, and it’s closed under multiplication because

s1, s2 ∈ S, i1, i2 ∈ I =⇒ (s1 + i1)(s2 + i2) = s1s2︸︷︷︸
∈S

+ s1i2 + i1s2 + i1i2︸ ︷︷ ︸
∈I

∈ S + I . �
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The isomorphism theorems for rings
All of the isomorphism theorems for groups have analogues for rings.

Fundamental homomorphism theorem: “All homomorphic images are quotients”

Correspondence theorem: Characterizes “subrings and ideals of quotients”

Fraction theorem: Characterizes “quotients of quotients”

Diamond theorem: characterizes “quotients of a sum”

Since a ring is an abelian group with extra structure, we don’t have to prove these from
scratch.

FHT for rings
If φ : R ! S is a ring homomorphism, then R/Ker(φ) ∼= Im(φ).

Proof (sketch)
The statement holds for the underlying additive group R. Thus, it remains to show that
the relabeling map (a group isomorphism)

ι : R/I −! Im(φ) , ι(r + I ) = φ(r).

is also a ring homomorphism:
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The FHT for rings
Consider the ring homomorphism φ : Z32 −! Z22, φ : abc 7−! bc.

100 110

111101

000 010

011001

I

001+I

010+I

011+I

R = Z32
φ

π

φ = ι ◦ π

I 010+I

001+I 011+I

Z32/I

ι

00 10

01 11

Z22
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The FHT for rings

Consider the ring homomorphism φ : Z32 −! Z22, φ : abc 7−! bc.

By the FHT for groups, we know that Z32/Ker(φ) ∼= Im(φ) = Z22, as (additive) groups.

+
000

100

010

110

001

101

011

111

000 100 010 110 001 101 011 111

000
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010

110
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010
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000
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011
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001

001
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000
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010

110
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001

111

011

100

000

110

010

011

111

001

101

010

110

000

100

111

011

101

001

110

010

100

000

000+I 010+I 001+I 011+I

010+I 000+I 011+I 001+I

001+I 011+I 000+I 010+I

011+I 001+I 010+I 000+I

ι
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000

-00 -10 -01 -11

-10 -00 -11 -01

-01 -11 -00 -10

-11 -01 -10 -00

The image is isomorphic to the Klein 4-group

Z22 ∼=
{

(0, 0)︸ ︷︷ ︸
0

, (1, 0)︸ ︷︷ ︸
a

, (0, 1)︸ ︷︷ ︸
b

, (1, 1)︸ ︷︷ ︸
c

}
.
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c
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00

The FHT theorem for rings says that ι also preserves the multiplicative structure of R/I .
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The FHT for rings
Consider the ring homomorphism φ : Z32 −! Z22, φ : abc 7−! bc.

The following Cayley tables show how ι preserves the multiplicative structure:

ι
(
(r + I )(s + I )

)
= ι(rs + I ).
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This quotient ring is isomorphic to{[
0 0
0 0

]
︸ ︷︷ ︸

0

,

[
1 0
0 0

]
︸ ︷︷ ︸

a

,

[
0 0
0 1

]
︸ ︷︷ ︸

b

,

[
1 0
0 1

]
︸ ︷︷ ︸

c

}
.
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0
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c
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The correspondence theorem: subrings of quotients

Correspondence theorem
Let I be an ideal of R. There is a bijective correspondence between subrings of R/I and
subrings of R that contain I .

Moreover every ideal of R/I has the form J/I , for some ideal satisfying I ⊆ J ⊆ R.

R = 〈10, 01〉 = Z8×Z2

〈11〉〈01, 20〉 〈10〉

〈01, 40〉 〈21〉 〈20〉=J

〈01〉 〈41〉 〈40〉= I

〈00〉

R/I ∼= 〈10, 01〉/I ∼= Z4× Z2

〈11〉/I〈01, 20〉/I 〈10〉/I

〈01, 40〉/I 〈21〉/I 〈20〉/I = J/I

〈01〉/I 〈41〉/I 〈40〉/I = I/I

〈00〉/I

Big idea
This is just like the correspondence theorem for groups, but it also “preserves colors.”
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The correspondence theorem: subrings of quotients
“The ideals of a quotient R/I are just the quotients of the ideals that contain I .”

R=〈10, 01〉=Z8×Z2

〈11〉〈01, 20〉 〈10〉

〈01, 40〉 〈21〉 〈20〉=J

〈01〉 〈41〉 〈40〉= I

〈00〉

R/I∼=〈10, 01〉/I ∼=Z4×Z2

〈11〉/I〈01, 20〉/I 〈10〉/I

〈01, 40〉/I 〈21〉/I 〈20〉/I =J/I

〈40〉/I = I/I

R/I∼=〈10+I , 01+I 〉∼=Z4×Z2

〈11+I 〉〈01+I , 20+I 〉 〈10+I 〉

〈01+I , 40+I 〉 〈21+I 〉 〈20+I 〉=J/I

〈40+I 〉= I/I

“shoes out of the box”

30 70

10 50

31 71

11 51

20 60

00 40

21 61

01 41

J = 〈20〉 ≤ R

“shoeboxes; lids off”

30 70

10 50

31 71

11 51

20 60

00 40

21 61

01 41

〈20〉/I ≤ R/I

“shoeboxes; lids on”

30 + I 31 + I

10 + I 11 + I

20 + I 21 + I

I 01 + I

〈20 + I 〉 ≤ R/I
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The correspondence theorem: subrings of quotients

Correspondence theorem (informally)

There is a bijection between subrings of R/I and subrings of R that contain I .

“Everything that we want to be true” about the subring lattice of R/I is inherited from the
subring lattice of R.

Most of these can be summarized as:

“The of the quotient is just the quotient of the ”

Correspondence theorem (formally)
Let I ≤ J ≤ R and I ≤ K ≤ R be chains of subrings and I E G . Then

1. Subrings of the quotient R/I are quotients of the subring J ≤ R that contain I .

2. J/I E R/I if and only if J E R

3. [R/I : J/I ] = [R : J]

4. J/I ∩ K/I = (J ∩ K)/I

5. J/I + K/I = (J + K)/I
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The correspondence theorem: subring structure of quotients

All parts of the correspondence theorem have nice subring lattice interpretations.

We’ve already interpreted the the first part. Here’s what the next four parts say.

R

J

K

I

0

a

b

c

R/I

J/I

K/I

I/I

a

b

c

R

J + K

J
K

J ∩ K

I

0

R/I

(J + K)/I

J/I
K/I

(J ∩ K)/I

I/I

R/I

J/N + K/I

J/I
K/I

J/I ∩ K/I

I/I
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The fraction theorem: quotients of quotients

The correspondence theorem characterizes the subring structure of the quotient R/J.

Every subring of R/I is of the form J/I , where I ≤ J ≤ R.

Moreover, if J E R is an ideal, then J/I E R/I . In this case, we can ask:

“What is the quotient ring (R/I )/(J/I ) isomorphic to?”

Fraction theorem
Given a chain I ≤ J ≤ R of ideals of R,

(R/I )/(J/I ) ∼= R/J.

R=〈10, 01〉=Z8×Z2

〈11〉〈01, 20〉 〈10〉

〈01, 40〉 〈21〉 〈20〉=J

〈01〉 〈41〉 〈40〉= I

〈00〉

R/I=〈10, 01〉/I ∼=Z4×Z2

〈11〉/I〈01, 20〉/I 〈10〉/I

〈01, 40〉/I 〈21〉/I 〈20〉/I =J/I

〈01〉/I 〈41〉/I 〈40〉/I = I/I

〈00〉/I

R/J=〈10, 01〉/I ∼=Z22

〈11〉/J〈01, 20〉/J 〈10〉/J

〈01, 40〉/J 〈21〉/J 〈20〉/J=J/J

〈01〉/J 〈41〉/J 〈40〉/J

〈00〉/J
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The fraction theorem: quotients of quotients

Fraction theorem
Given a chain I ≤ J ≤ R of ideals of R,

(R/I )/(J/I ) ∼= R/J.

R=〈10, 01〉=Z8×Z2

〈11〉〈01, 20〉 〈10〉

〈01, 40〉 〈21〉 〈20〉=J

〈40〉 〈41〉 〈40〉= I

〈00〉

R/I=〈10, 01〉/I ∼=Z4×Z2

〈11〉/I〈01, 20〉/I 〈10〉/I

〈01, 40〉/I 〈21〉/I 〈20〉/I =J/I

I/I

R/J=〈10, 01〉/I ∼=Z22

Z4Z22 Z4

Z2 Z2 Z2

Z1

R/I

〈11〉/I〈01, 20〉/I 〈10〉/I

〈01, 40〉/I 〈21〉/I 〈20〉/I =J/I

〈40〉/I

R/I
J/I

〈11〉/I
J/I

〈01,20〉/I
J/I

〈10〉/I
J/I

J/I
J/I

R/J

〈11〉/J〈01, 20〉/J 〈10〉/J

J/J

Z22

Z2Z2 Z2

Z1
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The fraction theorem: quotients of quotients

R=〈10, 01〉=Z8×Z2

〈11〉〈01, 20〉 〈10〉

〈01, 40〉 〈21〉 〈20〉=J

〈01〉 〈41〉 〈40〉= I

〈00〉

R/I=〈10, 01〉/I ∼=Z4×Z2

〈11〉/I〈01, 20〉/I 〈10〉/I

〈01, 40〉/I 〈21〉/I 〈20〉/I =J/I

〈01〉/I 〈41〉/I 〈40〉/I = I/I

〈00〉/I

R/J=〈10, 01〉/I ∼=Z22

〈11〉/J〈01, 20〉/J 〈10〉/J

〈01, 40〉/J 〈21〉/J 〈20〉/J=J/J

〈01〉/J 〈41〉/J 〈40〉/J

〈00〉/J

30 70

10 50

31 71

11 51

20 60

00 40

21 61

01 41

I ≤ J ≤ R

30 70

10 50

30+

10+

I

I

31 71

11 51

31+

11+

I

I

20 60

00 40

20+I

I

21 61

01 41

21+

01+

I

I

R/I consists of 8 cosets

J/I =
{
I , 20+I

}

30 70

10 50

31 71

11 51

20 60

00 40

21 61

01 41

10+J 11+J

J 01+J

R/J consists of 4 cosets

(R/I )/(J/I ) ∼= R/J ∼= Z22
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The fraction theorem: quotients of quotients

For another visualization, consider R = Z6 × Z4 and write elements as strings.

Consider the ideals J = 〈30, 02〉 ∼= Z22 and I = 〈30, 01〉 ∼= Z2 × Z4.

Notice that I ≤ J ≤ R, and I = J ∪ (01+J), and

R/I =
{
I , 01+I , 10+I , 11+I , 20+I , 21+I

}
, J/I = {I , 01+I}

R/J =
{
I ∪ (01+I ), (10+I ) ∪ (11+I ), (20+I ) ∪ (21+I )

}
(R/I )/(J/I ) =

{
{I , 01+I}, {10+I , 11+I}, {20+I , 21+I}

}
.

50 52

20 22

51 53

21 23

40 42

10 12

41 43

11 13

30 32

00 02

31 33

01 03

I ≤ J ≤ R

50 52

20 22
20+ I

51 53

21 23
21+I

40 42

10 12
10+I

41 43

11 13
11+I

30 32

00 02
I

31 33

01 03
01+I

R/I consists of 6 cosets
J/I =

{
I , 01+I

}

50 52

20 22

51 53

21 23

40 42

10 12

41 43

11 13

30 32

00 02

31 33

01 03

20+J

10+J

J

R/J consists of 3 cosets
(R/I )/(J/I ) ∼= R/J
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The diamond theorem: quotients of sums

Diamond theorem
Suppose S is a subring and I an ideal of R. Then

(i) The intersection S ∩ I is an ideal of S.

(ii) The following quotient rings are isomorphic:

(S + I )/I ∼= S/(S ∩ I ) .

R

S+I

S I

S∩I

Proof (sketch)

(i) Showing S ∩ I is an ideal of S is straightforward (exercise).

(ii) We already know that (S + I )/I ∼= S/(S ∩ I ) as additive groups.

Recall that we proved this by applying the FHT to the (group) homomorphism

φ : S −! (S + I )/I , φ : s 7−! s + I .

It remains to show that φ is a ring homomorphism, i.e., φ(s1s2) = φ(s1)φ(s2). �
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The diamond theorem: quotients of sums by factors

Like for groups, the diamond theorem guarantees an inherent “duality” in subring lattices.

For rings, it also “preserves the colors” – subgroup, subring, and ideal structure.

Order = 12

6

4

3

2

1

Index = 1

2

3

4

6

12

S+ I = Z6 × Z2

〈(2, 1)〉 〈(1, 1)〉 〈(1, 0)〉

S = 〈(0, 1), (3, 0)〉

〈(2, 0)〉 = I

〈(0, 1)〉 〈(3, 1)〉 〈(3, 0)〉

S ∩ I = 〈(0, 0)〉
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The diamond theorem: quotients of sums by factors

Like for groups, the diamond theorem guarantees an inherent “duality” in subring lattices.

For rings, it also “preserves the colors” – subgroup, subring, and ideal structure.

Order = 24

12

8
6

4
3

2

1

Index = 1

2

3
4

6
8

12

24

S+I = Z6 × Z4

〈10, 02〉 〈11〉 〈21〉

〈30,01〉= I
〈10〉 〈12〉 〈22〉=S

〈30, 02〉 〈31〉 〈01〉
〈20〉

〈30〉 〈32〉 〈02〉 = S ∩ I

〈00〉
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The diamond theorem illustrated by a “pizza diagram”

The following analogy is due to Douglas Hofstadter:

I

S

s2 + Is3 + I

s4 + I

sn + I

• 1

•s2•s3

•s4

•sn. . .

. . .

. . .

. . .

S + I = large pizza

S = small pizza

I = large pizza slice

S ∩ I = small pizza slice

(S + I )/I =
{
large pizza slices

}
S/(S ∩ I ) =

{
small pizza slices

}
Diamond theorem: (S + I )/I ∼= S/(S ∩ I )
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Theorem (exercise)
Every homomorphism φ : R ! S can be factored as a quotient and embedding:

R

R/I

S

π

φ

ι

r

r + I

φ(r)

π

φ

ι

R = Z4×Z2

〈20, 01〉 〈11〉 〈10〉

〈01〉 〈21〉 〈20〉=Ker (φ)

〈00〉

φ

π

Z6 × Z2

Z6 Z6 Z6
S = Z22

Z3 = I
Z2 Z2 Z2

Z1

R/I

〈01, 20〉/I 〈11〉/I 〈02〉/I

I/I

ι
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Maximal ideals and simple rings
A maximal normal subgroup M of G has no normal subgroups M � N � G . Formally:

M ≤ N ≤ G , and M,N E G =⇒ N = M, or N = G .

By the correspondence theorem, a normal subgroup M E G is maximal iff G/M is simple.

The Prüfer group Cp∞ of all pn-th roots of unity (n ∈ N) has no maximal normal subgroups:

〈1〉 ≤ Cp ≤ Cp2 ≤ Cp3 ≤ · · · ≤ Cp∞ , Cn =
{
e2πik/n | k ∈ N

}
⊆ C.

Definition
An ideal I ( R is maximal if I ⊆ J E R implies J = I or J = R.

A ring R is simple if its only (two-sided) ideals are 0 and R.

The following is immediate by the correspondence theorem.

Remark
An ideal M E R is maximal iff R/M is simple.

••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
••••••••••••••

C2∞

...

•
•••

•
• • •

C8

•
•

•
•

C4

••
C2

•
C1
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Maximal ideals and simple rings

Simple rings have no nontrivial proper ideals. Proper ideals cannot contain units.

In a field, every nonzero element is a unit. Therefore, fields have no nontrivial proper ideals.

Proposition
A commutative ring R with unity is simple iff it is a field.

Proof
“⇒”: Assume R is simple. Then (a) = R for any nonzero a ∈ R.

Thus, 1 ∈ (a), so 1 = ba for some b ∈ R, so a ∈ U(R) and R is a field. X

“⇐”: Let I ⊆ R be a nonzero ideal of a field R. Take any nonzero a ∈ I .

Then a−1a ∈ I , and so 1 ∈ I , which means I = R. X �

Theorem
Let R be a commutative ring with 1. The following are equivalent for an ideal I ⊆ R.

(i) I is maximal; (ii) R/I is simple; (iii) R/I is a field.
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Examples of maximal ideals & simple rings

1. The maximal ideals of R = Z are M = (p). The quotient field is Z/(p) ∼= Zp

2. Maximal ideals of R = Z[x ] includes those of the form

(x , p) =
{
xf (x) + p · g(x) | f , g ∈ Z[x ]

}
=
{
anxn + · · ·+ a1x + pa0 | ai ∈ Z

}
.

In the quotient field, “x := 0” and “p := 0”, and so

Z[x ]/(x , p) =
{
a0 + M | a0 = 0, . . . , p − 1

} ∼= Zp.

3. Let R = Q[x ]. The ideal

(x) =
{
xf (x) | f ∈ Q[x ]

}
=
{
anxn + · · ·+ a1x | ai ∈ Z

}
is maximal. In the quotient field, “x := 0”, and so

Q[x ]/(x) =
{
a0 + M | a0 ∈ Q

} ∼= Q.

4. In the multivariate ring R = F[x , y ] over a field, the ideal

I = (x , y) =
{
x · f (x , y) + y · g(x , y) | f , g ∈ R

}
of polynomials with no constant term is maximal. The quotient field is R/I ∼= F.

5. Examples of simple noncommutative rings: H, and Matn(F).
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Existence of maximal ideals

Given an ideal I1 ( R. Let’s try to find a maximal ideal that contains it.

If we have a sequence I1 ( I2 ( I3 ( · · · of ideals, then J1 :=
⋃

Ik ( R is an ideal.

If this isn’t maximal, find r2 6∈ J1, and let J2 = (J1, r2), and repeat this process.

Suppose we have J1 ( J2 ( J3 ( · · · . Then K1 :=
⋃

Jk ( R is an ideal.

Is this process going to “stop”?

I1 I2 I3 · · · ∪In =J1 J2 J3 · · · ∪Jn =K1 · · · M

R

1 •

Assuming the axiom of choice: YES!
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Ordinals and transfiniteness

A set is well-ordered if every subset has a minimal element.

The natural numbers N are well-ordered, the integers Z are not.

Loosely speaking, an ordinal is an equivalence class of well-ordered sets.

Ordinal arithmetic involves addition, multiplication, and exponentiation.

The ordinal for N is denoted ω. Some things may be surprising, like ω = 1 + ω 6= ω + 1.

ω • • • • • • • · · ·
1 + ω • • • • • • • • · · ·
ω + 1 • • • • • • • · · · •
ω + 2 • • • • • • • · · · • •
...
2ω • • • • • • • · · · • • • • • • • · · ·

2ω + 1 • • • • • • • · · · • • • • • • • · · · •
2ω + 2 • • • • • • • · · · • • • • • • • · · · • •
...

There are three types:

finite ordinals successor ordinals limit ordinals
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Ordinals and transfiniteness

Here are some depictions of the ordinals ω2 and ωω.

Mathematical induction and recursion is traditionally done over the ordinal ω.

Over general ordinals, these are callled transfinite induction and recursion.

The axiom of choice is needed.

The maximal ideal of I ⊆ R is basically the result of a transfinite union.
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Existence of maximal ideals

Zorn’s lemma (equivalent to the axiom of choice)

If P 6= ∅ is a poset in which every chain has an upper bound, then P has a maximal element.

Proposition
If R is a ring with 1, then every ideal I 6= R is contained in a maximal ideal M.

Proof
Fix I , and let P be the poset of proper ideals containing it.

Every chain I ⊆ I1 ⊆ I2 ⊆ I3 ⊆ · · · has an upper bound,
⋃

Ik ( R.

Zorn’s lemma guarantees a maximal element M in P, which is a maximal ideal containing I .

Corollary
If R is a ring with 1, then every non-unit is contained in a maximal ideal M.

Do you see why this doesn’t work for maximal subgroups?
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The characteristic of a field

Definition
The characteristic of F, denoted char F, is the smallest n ≥ 1 for which

n1 := 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0.

If there is no such n, then char F := 0.

Proposition
If the characteristic of a field is positive, then it must be prime.

Proof
If char F = n = ab, we can write

1 + · · ·+ 1︸ ︷︷ ︸
n

= (1 + · · ·+ 1︸ ︷︷ ︸
a

)(1 + · · ·+ 1︸ ︷︷ ︸
b

) = 0.

Since F contains no zero divisors, either a = n or b = n, hence n is prime. �
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Finite fields

We’ve already seen:

Fp = {0, 1, . . . , p − 1} is a field if p is prime

every finite integral domain is a field.

But what do these “other” finite fields look like?

Let R = F2[x ]. (We can ignore negative signs.)

The polynomial f (x) = x2 + x + 1 is irreducible over F2 because it doesn’t factor as
f (x) = g(x)h(x) of lower-degree terms. (Note that f (0) = f (1) = 1 6= 0.)

Consider the ideal I = (x2 + x + 1); the multiples of x2 + x + 1.

In R/I , we have the relation x2 + x + 1 = 0, or equivalently,

x2 = −x − 1 = x + 1.

The quotient has only 4 elements:

0 + I , 1 + I , x + I , (x + 1) + I .

As with the quotient group (or ring) Z/nZ, we usually drop the “ I ”, and just write

R/I = F2[x ]/(x2 + x + 1) ∼=
{
0, 1, x , x + 1

}
.
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Finite fields

Here is the finite field of order 4: F4 ∼= R/I = F2[x ]/(x2 + x + 1):

0 1

x x+1

+

0

1

x

x+1

0 1 x x+1

0

1

x

x+1

1

0

x+1

x

x

x+1

0

1

x+1

x

1

0

×
1

x

x+1

1 x x+1

1

x

x+1

x

x+1

1

x+1

1

x

F4∼=〈1, x〉

〈x〉 〈1〉 〈x + 1〉

〈0〉

Theorem (wait until Galois theory)
There exists a finite field Fq of order q, which is unique up to isomorphism, iff q = pn for
some prime p. If n > 1, then this field is isomorphic to the quotient ring

Fp[x ]/(f ),

where f is any irreducible polynomial of degree n.

Much of the error correcting techniques in coding theory are built using mathematics over
F28 = F256. This is what allows DVDs to play despite scratches.
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Computations within finite fields
The Macaulay2 software system was written for researchers in algebraic geometry and
commutative algebra.

It is freely available online:

https://www.unimelb-macaulay2.cloud.edu.au/

If we want to work in the quotient field F8 ∼= F2[x ]/(x3 + x + 1), we can type in:

R = ZZ/2[x] / ideal(x^3+x+1)

In F2[x ], the product (x2 + x + 1)(x + 1) = x3 + 2x2 + 2x + 1 is just x3 + 1.

Since x3 ≡ x + 1 modulo (x3 + x + 1), this reduces down to x .

Macaulay2 can compute this immediately, just by typing:

(x^2+x+1)*(x+1)
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Finite fields

Here is finite field of order 8: F8 ∼= R/I = F2[x ]/(x3 + x + 1):

+

0

1

x

x+1

x2

x2+1

x2+x

x2+x+1

0 1 x x+1 x2 x2+1 x2+x x2+x+1

0

1

x

x+1

x2

x2+1

x2+x

x2+x+1

1

0

x+1

x

x2+1

x2

x2+x+1

x2+x

x

x+1

0

1

x2+x

x2+x+1

x2

x2+1

x+1

x

1

0

x2+x+1

x2+x

x2+1

x2

x2

x2+1

x2+x

x2+x+1

0

1

x

x+1

x2+1

x2

x2+x+1

x2+x

1

0

x+1

x

x2+x

x2+x+1

x2

x2+1

x

x+1

0

1

x2+x+1

x2+x

x2+1

x2

x+1

x

1

0

×

1

x

x+1

x2

x2+1

x2+x

x2+x+1

1 x x+1 x2 x2+1 x2+x x2+x+1

1

x

x+1

x2

x2+1

x2+x

x2+x+1

x

x2

x2+x

x+1

1

x2+x+1

x2+1

x+1

x2+x

x2+1

x2+x+1

x2

1

x

x2

x+1

x2+x+1

x2+x

x

x2+1

1

x2+1

1

x2

x

x2+x+1

x+1

x2+x

x2+x

x2+x+1

1

x2+1

x+1

x

x2

x2+x+1

x2+1

x

1

x2+x

x2

x + 1

Notice how F2 = {0, 1} arises is a subfield, but not F4. (Why?)
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Finite fields

The multiplictive groups of these finite fields are F×4 ∼= C3 and F×8 ∼= C7.

If F8 had F4 as a subfield, then it would have three elements of order 3.

F4

Z2 F2 Z2

〈0〉

F8

Z22 Z22 Z22 Z22 Z22 Z22 Z22

Z2 Z2 Z2 F2 Z2 Z2 Z2

〈0〉

Similarly, F16 has 35 Z22-subgroups, but F
×
16
∼= C15 has only two elements of order 3.

These, with 0 and 1, comprise its unique F4-subfield.
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The subring lattice of the finite field F16 ∼= Z2[x ]/(x4 + x + 1)

F16

Z32 Z32 Z32 Z32 Z32 Z32 Z32 Z32 Z32 Z32 Z32 Z32 Z32 Z32 Z32

Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 F4 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22 Z22

Z2 Z2 Z2 Z2 Z2 Z2 Z2 F2 Z2 Z2 Z2 Z2 Z2 Z2 Z2

〈0〉
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Subfields of finite fields

Proposition
If F is a finite field, then |F| = pn for some prime p and n ≥ 1.

Proof
If char F = p, then F contains Fp = {0, 1, . . . , p − 1} as a subfield.

Note that F is an Fp-vector space, so pick a basis, x1, . . . , xn.

Every x ∈ F can be written uniquely as

x = a1x1 + · · ·+ anxn, ai ∈ Fp.

Counting elements immediately gives |F| = pn.

Proposition
If Fpn contains a subfield isomorphic to Fpm , then m | n.

Proof
Same as above, but Fpn is an Fpm -vector space. Take a basis x1, . . . , xk , count elements. �

M. Macauley (Clemson) Chapter 8: Rings Math 4120/4130, Visual Algebra 62 / 86

mailto:macaule@clemson.edu


Finite multiplictive subgroups of a field

Proposition (upcoming)
In a field, a degree-n polynomial can have at most n roots.

Proof (sketch)

The polynomial ring F[x ] has unique factorization. (We’ll show this soon.)

If f (r) = 0, then factor f (x) = (x − r)g(x), where deg g = n − 1. Apply induction.

Proposition

Every finite subgroup of the multiplictive group F× is cyclic.

Proof
Let H ≤ F× have finite order. If it were not cyclic, then Cpn × Cpm ≤ H for n,m ≥ 1.

Since each factor has a Cp-subgroup, F× has a C2
p -subgroup.

All p2 elements in H satisfy f (x) = xp − 1, which is impossible. �
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Prime ideals

Euclid’s lemma (300 B.C.)
If a prime p divides ab, then it must divide a or b.

Definition
Let R be a commutative ring. An ideal P ( R is prime if ab ∈ P implies a ∈ P or b ∈ P.

Examples
1. The ideal (n) of Z is a prime ideal iff n is a prime number (possibly n = 0).

2. In Z[x ], the ideals (2, x) and (x) are prime.

3. The ideal (2, x2 + 5) is not prime in Z[x ] because

x2 − 1 = (x + 1)(x − 1) ∈ (2, x2 + 5), but x ± 1 6∈ (2, x2 + 5).

Proposition (exercise)

R is an integral domain if and only if 0 := {0} is a prime ideal. �
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Prime ideals

Proposition
An ideal P ( R is prime iff R/P is an integral domain.

Proof
Consider the canonical quotient

π : R −! R/P, π(r) = r := r + P.

Note that the zero element is 0 = P = p + P, for any p ∈ P, and

a b = ab, because (a + P)(b + P) = ab + P.

Using the definitions, and our “boring but useful coset lemma”,

P is prime ⇐⇒ ab ∈ P ⇒ a ∈ P or b ∈ P

⇐⇒ ab = 0 ⇒ a = 0 or b = 0

⇐⇒ R/P is an integral domain.

�

Corollary
In a commutative ring, every maximal ideal is prime. �
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Primary ideals

Definition
Let R be a commutative ring. An ideal P ( R is primary if ab ∈ P implies a ∈ P or bn ∈ P
for some n ∈ N.

In the integers:

The prime ideals are of the form (p) = pZ, for some prime p.

The primary ideals are of the form (pn) = pnZ, for some prime p.

Every ideal can be written uniquely as an intersection of primary ideals. For example,

200Z = 8Z ∩ 25Z.

This is its primary decomposition.

Remark
An ideal P of R is:

prime iff the only zero divisor of R/P is zero,

primary iff every zero divisor of R/P is nilpotent.
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Radical ideals
Loosely speaking, a radical I of R is an ideal of “bad elements;” the quotient R/I is “nice.”

Preview example 1
The nilradical of R has two equivalent characterizations:

The set of nilpotent elements.

The intesection of nonzero prime ideals.

N(R) :=
{
x ∈ R | xn = 0 for some n ∈ N

}
=

⋂
06=P(R prime

P.

The quotient R/N(R) is a “subdirect product” of integral domains.

Preview example 2
The Jacobson radical of R has two equivalent characterizations:

The set of elements x ∈ R that annihilate simple R-modules, i.e., xM = 0 for all M.

The intesection of maximal ideals.

Jac(R) :=
{
x ∈ R | 1− rx is a unit for all r ∈ R

}
=

⋂
M(R max’l

M.

The quotient R/ Jac(R) is a “subdirect product” of fields.
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Subdirect products

Think of a subdirect product as being “almost a direct product.”

The “diagonal subring” S =
{

(n, n) | n ∈ Z
}
⊆ Z× Z is a subdirect product because:

(i) It is a subring of Z× Z.
(ii) It projects onto each component of the product.

Let
{
Ri | i ∈ I

}
be a family of rings with direct product and projection maps

R =
∏
i∈I

Ri , πj : R −! Rj

(ri )i∈I 7−! rj .

Definition
A ring S is a subdirect product of R if there is ι : S ↪! R such that each composition

S ι
−! R

πj
−! Rj , s ι

7−! (ri )i∈I
πj
7−! rj

is surjective.

Subdirect products can be defined analogously for sets, groups, vector spaces, etc.
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Subdirect products

Proposition

Let
{
Ji | i ∈ I

}
be a family of ideals of R with J =

⋂
i∈I

Ji . Then R/J is a subdirect product

of
{
R/Ji | i ∈ I

}
.

Proof
The map

φ : R −!
∏
i∈I

R/Ji , x 7−! (x + Ji )i∈I

is a homomorphism with Ker(φ) = J. By the FHT for rings, there is an isomorphism

ι : R/J −! Im(φ) ≤
∏
i∈I

R/Ji .

The composition of maps is surjective, for each j ∈ I :

R/J
ι

↪−!
∏
i∈I

R/Ji
πj
−! R/Jj , r + J ι

7−!
∏
i∈I

(r + Ji )i∈I
πj
7−! r + Jj .
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The nilradical of a ring

Definition (membership test)
The nilradical of R is the set of nilpotent elements:

N(R) =
{
a ∈ R | an = 0, for some n ∈ N

}
.

Proposition
N(R) is an ideal of R.

Proof
Subgroup: Suppose x , y ∈ N(R), and xn = ym = 0. Using the binomial theorem,

(x − y)n+m =

n+m∑
i=1

aix iyn+m−i .

Either i ≥ n (so x i = 0) or n + m − i ≥ m (so yn+m−i = 0) must hold. X

Ideal: If xn = 0 and r ∈ R, then (rx)n = rnxn = 0, so rx ∈ N(R). X
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The nilradical of a ring

Proposition (ideal characterization)

The nilradical is the intersection of all nonzero prime ideals: N(R) =
⋂

P(R prime

P.

Proof
“⊆” Let a ∈ N(R) and P ⊆ R prime. Let n ≥ 1 be minimal such that an ∈ P.

Since an−1a ∈ P (prime), either an−1 ∈ P (contradiction) or a ∈ P. Thus a ∈ ∩P. X

“⊇” Suppose a 6∈ N(R); we’ll show a 6∈ ∩P.

S =
{
J E R s.t. an 6∈ J for all n ∈ N

}
.

S is nonempty since it contains (0).

We can apply Zorn’s lemma (why?) to get a maximal element P ∈ S.

P is prime: Say xy ∈ P but x , y 6∈ P. Then an ∈ (x) + P︸ ︷︷ ︸
/∈S

and am ∈ (y) + P︸ ︷︷ ︸
/∈S

for some n,m.

But then anm ∈ (xy) + P︸ ︷︷ ︸
=P

, contradicting the fact that P ∈ S. �
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The Jacobson radical of a ring

Definition (membership test)
The Jacobson radical of R is the set

Jac(R) =
{
x ∈ R | 1− rx is a unit for all r ∈ R

}
.

Proposition (ideal characterization)

The Jacobson radical is the intersection of all maximal ideals: Jac(R) =
⋂

M(R prime

M.

Proof
“⊆”: Suppose 1− rx 6∈ U(R) for some x ∈ R, and let M be a maximal ideal containing it.

If r ∈ Jac(R), then r ∈ M, which is impossible because

1 = (1− rx︸ ︷︷ ︸
∈M

) + rx︸︷︷︸
∈M

∈ M.

M. Macauley (Clemson) Chapter 8: Rings Math 4120/4130, Visual Algebra 72 / 86

mailto:macaule@clemson.edu


The Jacobson radical of a ring

Definition (membership test)
The Jacobson radical of R is the set

Jac(R) =
{
x ∈ R | 1− rx is a unit for all r ∈ R

}
.

Proposition (ideal characterization)

The Jacobson radical is the intersection of all maximal ideals: Jac(R) =
⋂

M(R max’l

M.

Proof
“⊇”: Suppose x 6∈ M for some maximal ideal M. Then

R = M + (x) =
{
m + rx | m ∈ M, r ∈ R

}
,

so we can write
1 = m + rx =⇒ 1− xy︸ ︷︷ ︸

6∈U(R)

= m ∈ M.
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Quotients by radicals are subdirect products

Corollary
The quotient R/N(R) is a subdirect product of integral domains.

Proof

Let
{
Pi | i ∈ I

}
be the set of prime ideals of R; recall N(R) =

⋂
i∈I

Pi .

Then R/N(R) is a subdirect product of
{
R/Pi | i ∈ I

}
, which are all integral domains. �

Corollary
The quotient R/ Jac(R) is a subdirect product of fields.

Proof

Let
{
Mi | i ∈ I

}
be the set of maximal ideals of R; recall Jac(R) =

⋂
i∈I

Mi .

Then R/ Jac(R) is a subdirect product of
{
R/Mi | i ∈ I

}
, which are all fields. �
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The radical of an ideal

Definition
The radical of an ideal I is the set

√
I :=

{
r ∈ R | rn ∈ I , for some n ∈ N

}
.

If
√
I = I , then I is a radical ideal.

The nilradical is just the radical of the zero ideal: N(R) =
√
0.

Proposition

N(R/I ) =
√
I/I .

Proof (sketch; details for HW)
R

√
I

I

〈0〉

r ∈

⇓

rn ∈

R/I

√
I/I

I/I = 0̄

r̄ ∈

⇓

r̄n ∈

M. Macauley (Clemson) Chapter 8: Rings Math 4120/4130, Visual Algebra 75 / 86

mailto:macaule@clemson.edu


The radicals of an ideal

Definition
The Jacobson radical of I is the intersection of all maximal ideals that contain it:

jac(I ) :=
⋂

I⊆MER
M.

The Jacobson radical of R is the Jacobson radical of the zero ideal: Jac(R) := jac(0).

Definition / proposition
The radical of I is the intersection of all prime ideals that contain it:

√
I =

⋂
I⊆PER

P.

The nilradical of R is the radical of the zero ideal: N(R) :=
√
0.

Proposition (HW)
In a commutative ring with 1, an ideal P is prime iff it is primary and radical.
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Motivation: constructing Q from Z
Rational numbers are ordered pairs under an equivalence, e.g., 1

2 = 2
4 = 3

6 = · · ·

Equivalence of fractions
Given a, b, c, d ∈ Z, with b, d 6= 0,

a
b

=
c
d

if and only if ad = bc.

We can mimic this construction in any integral domain.

Definition
Given an integral domain R, its field of fractions is the set

R × R∗ =
{

(a, b) | a, b ∈ R, b 6= 0
}
,

under the equivalence (a1, b1) ∼ (a2, b2) iff a1b2 = b2a1.

Denote the class containing (a, b) as a/b. Addition and multiplication are defined as

a
b

+
c
d

=
ad + bc

bd
and

a
b
×

c
d

=
ac
bd
.

It’s not hard to show that + and × are well-defined.
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Embedding integral domains in fields

Lemma
In the construction of the field of fractions from R, we must verify:

∼ is a equivalence relation

the + and × operations are well-defined on (R × R∗)/ ∼
the additive identity is 0/r for any r ∈ R∗

the multiplicative identity is r/r for any r ∈ R∗

(a, b)−1 = b/a.

Integral domain Field of fractions

Z (integers) Q (rationals)

Z[i ] (Gaussian integers) Q(i) (Gaussian rationals)

F [x ] (polynomials) F (x) (rational functions)

Every integral domain canonically embeds into its field of fractions, via r 7! r/1.

Moreover, this is the minimal field containing R.
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Co-universal property of the field of fractions

Proposition
Let R be an integral domain with embedding ι : R ↪! FR into its field of fractions. Then
for every other embedding f : R ↪! K into a field, there is a unique h : FR ↪! K such that
h ◦ ι = f .

R K

FR

f

ι ∃!h

r f (r)

r/1

f

ι h

Proof
Define the map

h : FR −! K , h(a/b) 7−! h(a/1)h(b/1)−1 = f (a)f (b)−1.

We need to show that h is

(i) well-defined

(ii) a ring homomorphism,

(iii) injective

(iv) unique.
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Co-universal property of the field of fractions

Proposition
Let R be an integral domain with embedding ι : R ↪! FR into its field of fractions. Then
for every other embedding f : R ↪! K into a field, there is a unique h : FR ↪! K such that
h ◦ ι = f .

R K

FR

f

ι ∃!h

r f (r)

r/1

f

ι h

Proof
Define the map

h : FR −! K , h(a/b) 7−! h(a/1)h(b/1)−1 = f (a)f (b)−1 = f (a)f (b−1).

(i) Well-defined. Suppose a/b = c/d ⇔ ad = bc ⇔ ab−1 = cd−1.

h(a/b) = f (a)f (b−1) = f (ab−1) = f (cd−1) = f (c)f (d−1) = h(c/d). X
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Co-universal property of the field of fractions

Proposition
Let R be an integral domain with embedding ι : R ↪! FR into its field of fractions. Then
for every other embedding f : R ↪! K into a field, there is a unique h : FR ↪! K such that
h ◦ ι = f .

R K

FR

f

ι ∃!h

r f (r)

r/1

f

ι h

Proof
Define the map

h : FR −! K , h(a/b) 7−! h(a/1)h(b/1)−1 = f (a)f (b)−1 = f (a)f (b−1).

(ii) Ring homomorphism. Suppose a/b = c/d . Then

h(a/b · c/d) = h(ac/bd) = f (ac)f (d−1b−1) = f (a)f (c)f (d−1)f (b−1)

= f (a)f (b−1) · f (c)f (d−1) = h(a/b)h(c/d). X

Verification of h(a/b + c/d) = h(a/b) + h(c/d) is similar. (Exercise)
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Co-universal property of the field of fractions

Proposition
Let R be an integral domain with embedding ι : R ↪! FR into its field of fractions. Then
for every other embedding f : R ↪! K into a field, there is a unique h : FR ↪! K such that
h ◦ ι = f .

R K

FR

f

ι ∃!h

r f (r)

r/1

f

ι h

Proof
Define the map

h : FR −! K , h(a/b) 7−! h(a/1)h(b/1)−1 = f (a)f (b)−1 = f (a)f (b−1).

(iii) Injective. It suffices to show that Ker(h) = {0}. Suppose

0 = h(a/b) = f (a)f (b)−1 ∈ K .

However, f (b)−1 6= 0 since f is an embedding and b 6= 0.

Thus f (a) = 0, so a = 0 in R. Thus a/1 = 0/1, the zero element in FR . X
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Co-universal property of the field of fractions

Proposition
Let R be an integral domain with embedding ι : R ↪! FR into its field of fractions. Then
for every other embedding f : R ↪! K into a field, there is a unique h : FR ↪! K such that
h ◦ ι = f .

R K

FR

f

ι ∃!h

r f (r)

r/1

f

ι h

Proof
Define the map

h : FR −! K , h(a/b) 7−! h(a/1)h(b/1)−1 = f (a)f (b)−1 = f (a)f (b−1).

(iv) Uniqueness. Suppose there is another g : FR ! K such that f = g ◦ ι. Then

g(a/b) = g((a/1) ·(b/1)−1) = g(a/1)g(b/1)−1 = g(ι(a))g(ι(b))−1 = f (a)f (b)−1 = h(a/b),

which completes the proof. �
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Rings of fractions and localization
The co-universal property can be used as the definition of the field of fractions, allowing:

the generalization to rings without 1, e.g., R = 2Z. (Exercise: show that F2Z = Q.)
the generalization to constructing fractions of certain subsets.

Let R be commutative, D ⊆ R nonempty and multiplicatively closed with no zero divisors.

We can carry out the same construction of the set

R ×D =
{

(r , d) | r ∈ R, d ∈ D
}
, (r1, d1) ∼ (r2, d2) iff r1d2 = r2d1.

The resulting ring is the localization of R at D, denoted D−1R.

Proposition (HW)

Let R be a commutative ring with embedding ι : R ↪! D−1R. Then for every other
embedding f : R ↪! S to a ring where f (D) are units, there is a unique h : D−1R ↪! S such
that h ◦ ι = f .

R S

D−1R

f

ι ∃!h

r f (r)

r/1

f

ι h
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Localization with zero divisors

We can generalize this further! Allow D to contain zero divisors.

The mapping R ! D−1R sending r to its equivalence class is no longer injective:

ι : R −! D−1R, ι(z) = 0, for all zero divisors z ∈ D.

We still have a co-universal property, that could have been the definition.

Proposition (exercise)

Let R be a commutative ring with ι : R ! D−1R. For every other f : R ! S to a ring
where the non zero-divisors in f (D) are units, there is a unique h : D−1R ! S such that
h ◦ ι = f .

R S

D−1R

f

ι ∃!h

r f (r)

r/1

f

ι h

Thus, D−1R is the “smallest ring” where all non zero-divisors in D are invertible.
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Examples of rings of fractions

1. If R is an integral domain and D = R∗, then D−1R is its field of fractions.

2. If D is the set of non zero divisors, then D−1R is the total ring of fractions of R.

3. If non-unit of R is a zero divisor, then R is equal to its total ring of fractions.

Examples include Zn1 × · · · × Znk .

In these rings, every prime ideal is maximal (exercise).

4. The localization of R = F [x ] at D = {xn | n ∈ Z} are the Laurent polynomials:

D−1R = F [x , x−1] =
{
a−mx−m + · · ·+ a−1x−1 + a0 + a1x + · · ·+ anxn | ai ∈ F

}
.

5. If R = Z and D =
{
5n | n ∈ N

}
, then

D−1R = Z[ 15 ] =
{
a0 +

a1
5

+
a2
52

+ · · ·+
an
5n
| ai ∈ Z

}
.

which are “polynomials in 1
5 ” over Z.

6. If D = R − P for a prime ideal, then RP := D−1R is the localization of R at P. It is a
local ring – it has a unique maximal ideal, PRP .
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