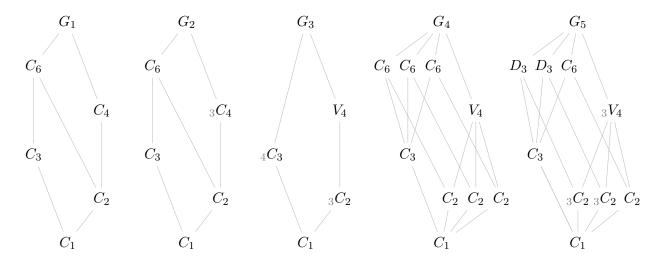
Math 4120, Midterm 1. March 4, 2025

Write your answers for these problems *directly on this paper*. You should be able to fit them in the space given.

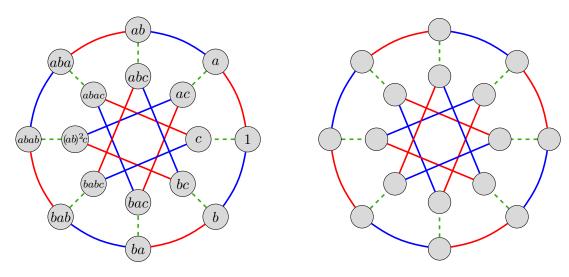
1. (15 pts) There are five groups of order twelve: C_{12} , $C_6 \times C_2$, D_6 , Dic₆, and A_4 . Below are the subgroup diagrams of all of them, not necessarily in that order.



Fill out the following table.

	G_1	G_2	G_3	G_4	G_5
# subgroups					
# normal subgroups					
# conj. classes of subgps					
abelian? (Y/N)					
cyclic? (Y/N)					
$G_i\cong$					

2. (34 pts) Consider the Cayley graph of a group $G = \langle a, b, c \rangle$ shown below, with subgroups $H = \langle abab, c \rangle$ and $K = \langle ab \rangle$. The green edges are dashed just to help differentiate them from the red edges. Though this looks like the diquaternion group DQ_8 , it's not!



- (a) In the nodes of the graph on the right, write the *order* of the corresponding elements.
- (b) The group G has order _____, and it (is)(is not) [\leftarrow circle one] abelian.
- (c) The subgroup $\langle a,b\rangle$ has order _____, index ____, and (is)(is not) normal.
- (d) The subgroup $\langle c \rangle$ has order _____, index ____, and (is)(is not) normal.
- (e) The subgroup $\langle ac \rangle$ is isomorphic to the familiar group
- (f) The subgroup $\langle a, b \rangle$ is isomorphic to the familiar group ______.
- (g) The quotient group $G/\langle a,b\rangle$ is isomorphic to _____
- (h) Find the left cosets of H. Write them as subsets. (Don't forget H itself.)
- (i) Write down the right cosets of the subgroup H. Write them as subsets.
- (i) Find the normalizer of H.
- (k) Find all conjugate subgroups to H. Write each subgroup only once.
- (1) Is H normal? Why or why not?

- (m) Find the left cosets of the subgroup K. Write them as subsets.
- (n) Write down the right cosets of the subgroup K. Write them as subsets.
- (o) Find the normalizer of K.
- (p) Find all conjugate subgroups to K. Write each subgroup only once.
- (q) Is K normal? Why or why not?
- (r) The subgroups $H \cong$ and $K \cong$
- (s) Which familiar group is G isomorphic to? Justify your answer.
- 3. (15 pts) Finish the following formal mathematical definitions. For full credit, you must properly use \forall (for all) or \exists (there exists), where appropriate.
 - (a) A subgroup $H \leq G$ is normal if
 - (b) The center of a group G is $Z(G) := \left\{\right.$
 - (c) The normalizer of a subgroup $H \leq G$ is $N_G(H) := \left\{\right.$
 - (d) The centralizer of an element $h \in G$ is $C_G(h) := \left\{\right.$
 - (e) The conjugacy class of an element $h \in G$ is $\operatorname{cl}_G(h) := \left\{\right.$

4. (12 pts) Let $G = \operatorname{GL}_2(\mathbb{R})$, the 2×2 invertible matrices over the real numbers. Recall that the special linear group $H = \operatorname{SL}_2(\mathbb{R}) \subseteq \operatorname{GL}_2(\mathbb{R})$ consists of the those matrices that have determinant 1. Prove that H is a subgroup of G, and that it is normal. You may assume that $\det(AB) = \det(A) \det(B)$.

5. (4 pts) Write down every abelian group of order $42 = 2 \cdot 3 \cdot 7$, up to isomorphism.

6. (4 pts) Prove that if G is a noncyclic group of order |G| = 42, then it must be nonabelian.

7. (8 pts) Let $H \leq G$. Define the sets

$$abH = \{abh \mid h \in H\}, \qquad aHbH = \{ah_1bh_2 \mid h_1, h_2 \in H\}.$$

Prove that if H is normal in G, then abH = aHbH. [Show \subseteq and \supseteq separately.]

8. (8 pts) Draw the subgroup lattice of $S_3 = \{e, (123), (132), (12), (13), (23)\} \cong D_3$, where each subgroup is written by generator(s). Denote each conjugacy class $\operatorname{cl}_G(H)$ by circling it on the lattice. Write "Z(G)=" by the center, and find the normalizer of each subgroup.