Math 4120, Midterm 2. April 15, 2025

1. (22 pts) Consider the following set S_1 of seven "binary pentagons":

The group $G = D_5 = \langle \mathbf{r}, \mathbf{f} \rangle$ acts on S_1 via $\phi_1 \colon G \to \operatorname{Perm}(S_1)$, where

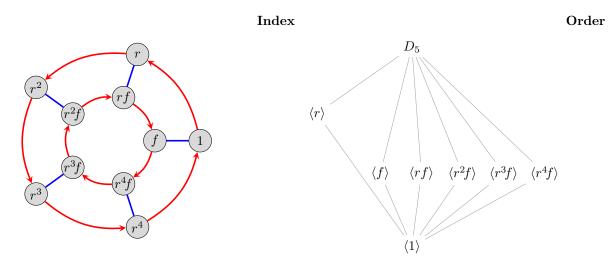
- $\phi(r) =$ rotates each pentagon 72° counterclockwise, $\phi(f) =$ reflects each pentagon about a vertical axis.
- (a) Draw the *action graph*. (No need to re-draw these pentagons, just add edges to what appears above.) Distinguish r and f-paths differently, e.g., dashed or double lines, use colors, etc.
- (b) Above or beside each pentagon, write down its stabilizer in terms of generator(s), i.e., as $\langle \ldots \rangle$.
- (c) Fill in the following. Feel free to write, e.g., $\{\#1, \#7\}$, instead of actually re-drawing the pentagons.

•
$$\operatorname{fix}(f) =$$
 • $\operatorname{fix}(rf) =$

- $\operatorname{fix}(r^2 f) =$ $\operatorname{fix}(r) =$
- fix(1) = Average size of fix(g), where $g \in D_5 =$
- $\operatorname{Fix}(\phi) =$ $\operatorname{Ker}(\phi) =$
- (d) Now, repeat Parts (a) and (b), for the action $\phi_2: G \to \operatorname{Perm}(S_2)$ on the following set S_2 of binary pentagons.

- (e) Are the two actions $\phi_1: G \to \operatorname{Perm}(S_1)$ and $\phi_2: G \to \operatorname{Perm}(S_2)$ equivalent? If yes, describe the isomorphism $\iota: D_5 \to D_5$ and bijection $\sigma: S_1 \to S_2$ that works. If no, explain why.
- (f) Are S_1 and S_2 isomorphic as *G*-sets? Justify your answer.
- (g) Describe how to construct a transitive D_5 -set (i.e., the action graph is connected) consisting of exactly two "decorated" pentagons. Draw the action graph.

2. (15 pts) Consider the group $G = D_5$ whose Cayley graph and subgroup lattice are shown below.



- (a) For each "level" in the subgroup lattice, write the *order* and the *index* of the subgroups, under the words "**Order**" and "**Index**."
- (b) Consider the (right) action of $G = D_5$ on its set of subgroups, where $\phi(g): H \mapsto g^{-1}Hg$. Draw the action graph, superimposed on the subgroup lattice above. [Be careful not to do $\phi(g): H \mapsto gHg^{-1}$.]
- (c) For this D_5 -action (on its subgroups), stab $(\langle rf \rangle) =$ _____ and stab $(\langle r^2 f \rangle) =$ _____.
- (d) Let $G = D_5$ act on the right cosets of $H = \langle f \rangle$ by $\phi(g) \colon Hx \mapsto Hxg$. Draw the action graph, and beside each coset, write its stabilizer.

(e) How many distinct transitive (i.e., connected) D_5 -sets are there, up to isomorphism? Draw an action graph for each one, using the generating set $D_5 = \langle r, f \rangle$.

- 3. (17 pts) Fill in the following blanks:
 - (a) The action of D_5 on itself by multiplication has orbit(s) and fixed points(s).
 - (b) The action of D_5 on its subgroups by conjugation has orbit(s) and fixed points(s).
 - (c) The action of D_5 on the cosets of $H = \langle f \rangle$ by multiplication has _____ orbit(s) and _____ fixed points(s).
 - (d) The group D_5 has ______ Sylow 2-subgroup(s) and ______ Sylow 5-subgroup(s).
 - (e) Find all distinct ways (i.e., up to isomorphism) that D_5 can be written as a direct or semidirect product of two of its proper subgroups: ______.
 - (f) A homomorphism $\phi: G \to H$ is ______ if and only if $\operatorname{Ker}(\phi) = \{e\}$.
 - (g) A homomorphism $\phi: G/N \to H$ is well-defined if aN = bN implies _____.
 - (h) A homomorphism $\phi: G/N \to H$ is *injective* if ______ implies ______.
 - (i) Recall that an automorphism is *inner* if is has the form $g \mapsto x^{-1}gx$. The inner automorphism group of V_4 is $\text{Inn}(V_4) \cong$
 - (j) If G is nonabelian and $\phi: G \to \mathbb{Z}$ a homomorphism, then $\phi(ab) =$ for all $a, b \in G$.
 - (k) If G is nonabelian and $\phi: G \to \mathbb{Z}$ a homomorphism, then $\phi(e) =$ _____
 - (1) If G is nonabelian and $\phi: G \to \mathbb{Z}$ a homomorphism with $\phi(g) = 1$, then $\phi(g^{-1}) = 1$
- 4. (10 pts) Define a homomorphism

$$\phi: D_4 \longrightarrow \mathbb{Z}_2^2 = \{00, 01, 10, 11\}, \qquad \phi(r) = 10, \quad \phi(f) = 01.$$

- (a) Find the image of the following elements:
- $\phi(1) = \phi(r^2) = \phi(r^3) = \phi(rf) = \phi(r^2f) = \phi(r^3f) =$
- (b) $\operatorname{Ker}(\phi) =$ _____, and $D_4 / \operatorname{Ker}(\phi)$ is isomorphic to the familiar group _____
- (c) This homomorphism (is)(is not) [\leftarrow circle one] injective, and (is)(is not) surjective.
- 5. (12 pts) Let G be a group of order $40 = 2^3 \cdot 5$.
 - (a) A Sylow 2-subgroup of G has order _____, and a Sylow 5-subgroup has order _____
 - (b) Prove that G cannot be simple. State any results that you use.

 $\Big\}.$

- 6. (24 pts) Let A and B be subgroups of G, and assume that A normalizes B (i.e., that aB = Ba for every $a \in A$).
 - (a) Prove that $B \trianglelefteq AB$.

(b) Prove that $(A \cap B) \trianglelefteq A$.

- (c) By definition of a quotient group, $AB/B = \left\{ \right.$
- (d) Show (or just briefly explain why) AB/B = A/B.
- (e) Prove that the following quotient groups are isomorphic:

$$A/(A \cap B) \cong AB/B.$$