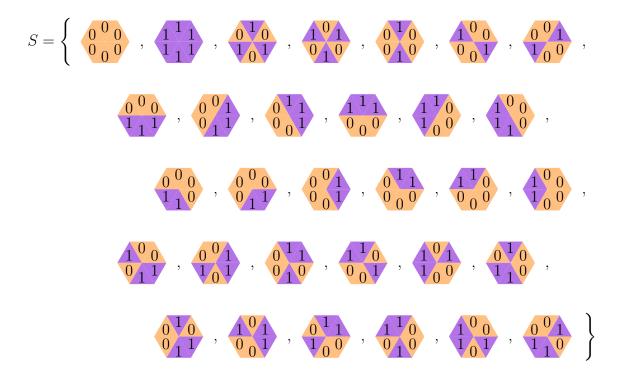
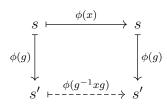
1. Consider the right action of $G = D_6 = \langle r, f \rangle$ on following set of 31 "binary hexagons," where r rotates each one 60° counterclockwise, and f flips each one horizontally (i.e., across a vertical axis).



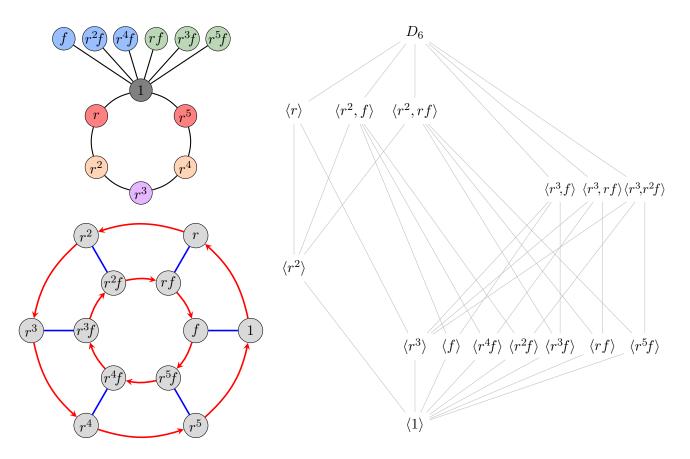
- (a) Draw the action graph.
- (b) Construct the "fixed point table", which has a checkmark in row g and column s if $s \cdot \phi(g) = s$.
- (c) Next to each $s \in S$ on your action graph, write $\operatorname{stab}(s)$, the stabilizer subgroup, using its generators. Which subgroups of D_6 don't appear?
- (d) The *fixator* of each $g \in D_6$, denoted fix(g), can be read off of the the fixed point table. What is the average size $|\operatorname{fix}(g)|$?
- (e) Find $\text{Ker}(\phi)$ and $\text{Fix}(\phi)$.
- 2. Suppose that G acts on S via the homomorphism $\phi: G \to \text{Perm}(S)$.
 - (a) Show that stab(s) is a subgroup for all $s \in S$. Use the notational conventions that we have been using in lecture.
 - (b) Show that the stablizers of any two elements in the same orbit are conjugate specifically, that $\operatorname{stab}(s.\phi(g)) = g^{-1} \operatorname{stab}(s)g$ for all $g \in G$ and $s \in S$. This relationship is summarized by the following commutative diagram.



- 3. Suppose a group G of order 55 acts on a set S of size 14. Let $s \in S$ be an arbitrary element.
 - (a) What are the possible sizes of the orbit of s?
 - (b) What are the possible sizes of the stabilizer of s?
 - (c) Show that this action must have a fixed point.
 - (d) What is the fewest number of fixed points that this action can have? Justify your answer.
- 4. Let $G = D_6 = \langle r, f \rangle$ act on its set $S = \{H \leq D_6\}$ of subgroups by conjugation, i.e.,

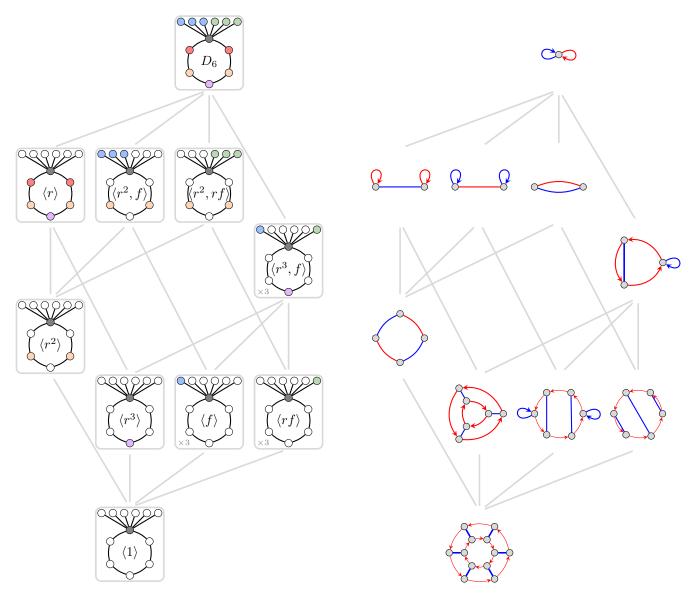
 $\phi \colon G \longrightarrow \operatorname{Perm}(S) \,, \qquad \phi(g) = \textit{the permutation that sends each } H \mapsto g^{-1} Hg.$

A Cayley graph, cycle graph, and subgroup lattice for D_6 are shown below.



- (a) Construct the action graph, and superimpose it on the subgroup lattice.
- (b) Construct the fixed point table.
- (c) Find stab(H) for each subgroup $H \leq D_6$, and fix(g) for each $g \in D_6$.
- (d) Find $\text{Ker}(\phi)$ and $\text{Fix}(\phi)$.
- (e) Interpret $\operatorname{orb}(H)$, $\operatorname{stab}(H)$, $[G : \operatorname{stab}(H)]$, $\operatorname{Fix}(\phi)$, $\operatorname{Ker}(\phi)$, $\operatorname{fix}(g)$, and the average size of $|\operatorname{fix}(g)|$ in terms of familiar algebraic objects.

5. There is a *Galois correspondence* between conjugacy classes of subgroups of G and transitive actions of G, defined by collapsing the right cosets of H. An example of this correspondence for D_6 is shown below.



Carry out this construction for $D_6 = \langle s, t \rangle$, where where s = f and t = fr. As was done above, label each conjugacy class with a subgroup that contains it, but use this new generating set.