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1. Carry out the following steps for the groups C7 o C3 and C9 o C3, whose Cayley graphs
are shown below.
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(a) Let G act on its subgroups by conjugation. Draw the action graph superimposed on
the subgroup lattice. Find stab(H) for each H ≤ G, Ker(φ), and Fix(φ).

(b) Let G act on the right cosets of H = 〈s〉, via the homomorphism

φ : G −! Perm(S) , φ(g) = the permutation that sends each Hx 7! Hxg.

Construct the action graph. Find stab(Hx) for each right coset, Ker(φ), and Fix(φ).

2. Loosely speaking, the upcoming Sylow theorems will us that (1) all p-subgroups come in
a single “p-subgroup tower”, (2) the “top” of these towers are a single conjugacy class, and
(3) the size of this class is 1 mod p. This is illustrated below with the groups of order 12.
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Using the LMFDB, construct analogous diagrams for the groups of order 18 and 20.
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3. In this problem, we will explore the actions of the dicyclic group Dic6 and its automor-
phism group on itself and its subgroups by conjugation. A Cayley graph, subgroup lattice,
and conjugacy classes are shown below.
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(a) The right action of Dic6 on itself by conjugation is defined by the homomorphism

φ : Dic6 −! Perm(S) , φ(g) = the permutation that sends each x 7! g−1xg.

Draw the action graph and construct the fixed point table. Find stab(s) for each
s ∈ S, fix(g) for each g ∈ G, as well as Ker(φ) and Fix(φ).

(b) The automorphism group of Dic6 is Aut(Dic6) = 〈ϕr, ϕs, ω〉 acts on Dic6, where ω is
the outer automorphism defined by

ω : Dic6 −! Dic6, ω(r) = r, ω(s) = s−1 = r3s,

that “reverses” the blue arrows. Make a diagram showing how each automorphism
permutes the elements of Dic6. Then construct the action graph, fixed point table,
and find stab(s), fix(g), Ker(φ) and Fix(φ).

(c) The automorphism group Aut(Dic6) = 〈ϕr, ϕs, ω〉 is isomorphic to D6. Construct a
Cayley graph and subgroup lattice using these generators.

(d) The group Aut(Dic6) also acts on the conjugacy classes of Dic6. Construct the action
graph, fixed point table, and find stab(s), fix(g), Ker(φ) and Fix(φ).

4. Let φ : G ! Perm(S) be a left group action. Prove the orbit-stabilizer theorem by
constructing a bijection between orb(s) and left cosets of H = stab(s). Use analogous
notational conventions from lecture, e.g., φ(g).s instead of s.φ(g).
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5. Recall that two group actions φ1 : G1 −! Perm(S1) and φ2 : G2 −! Perm(S2) are equiv-
alent if there is an isomorphism ι : G1 ! G2 and a bijection σ : S1 ! S2 such that
σ ◦ φ1(g) = φ2(ι(g)) ◦ σ for all g ∈ G1. In other words, the following diagram commutes:

S1 S1

S2 S2

φ1(g)

σ σ

φ2(ι(g))

In class, we proved that every transitive G-action is equivalent to G acting on a set
of cosets by multiplication. We did this by using the identity isomorphism ι : G ! G
between the groups, and the bijection σ : S ! H\G defined by

σ : S −! H\G, σ : s.φ(x) 7! Hx.

This was inpired by the following picture:
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Prove an analogous statement: that every simply transitive action is equivalent to G
acting on itself by conjugation. The proof is not much different than just replacing each
“H” with the identity element, “1” in the one we did in class.
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