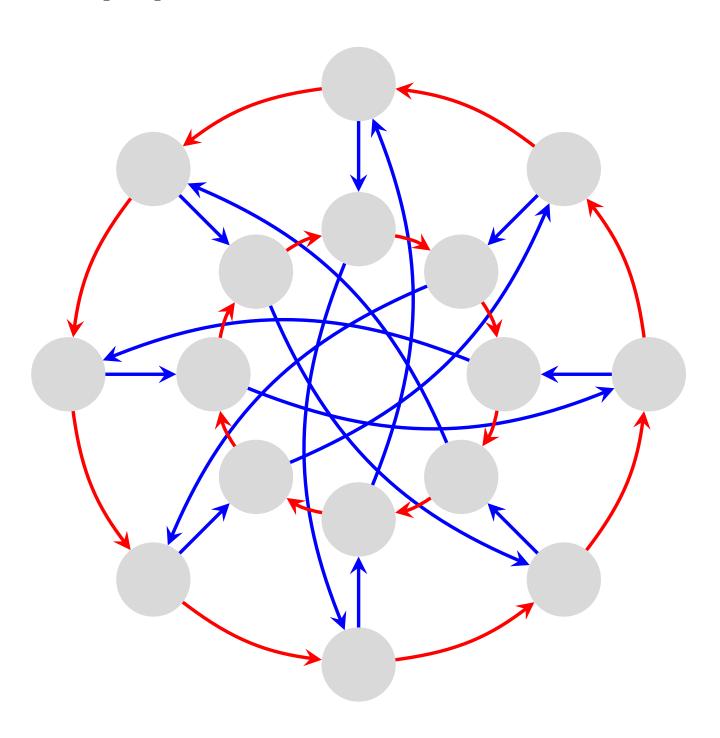
Supplemental material: Visual Algebra (Math 4120), HW 1

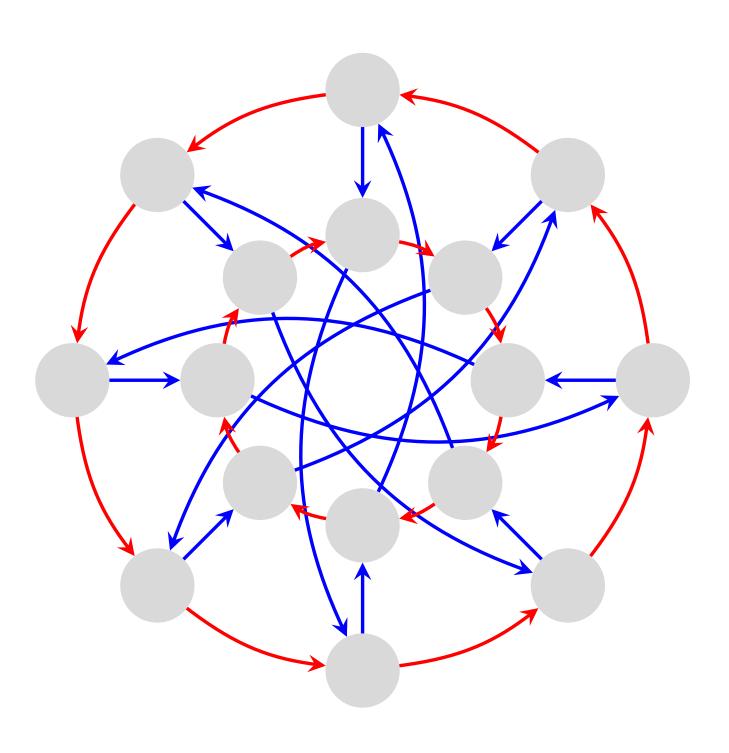
#3(a): Cayley graph for the generalized quaternion group

$$Q_{16} = \left\langle \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i, j \right\rangle,$$

where $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i = e^{2\pi i/8} = \zeta_8$ is an 8th root of unity.



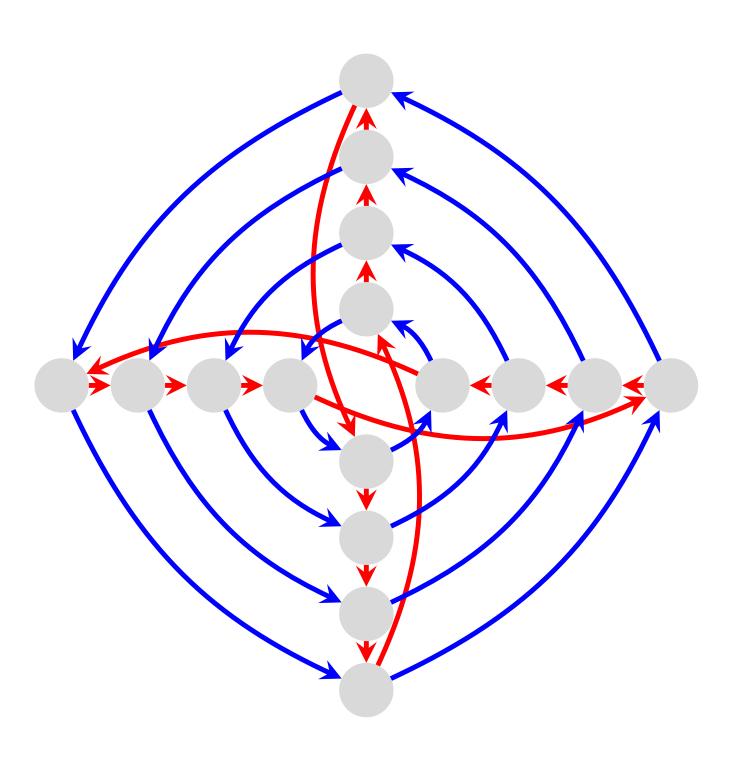
#3(a): Cayley graph for the generalized quaternion group $Q_{16} = \langle \zeta_8, j \rangle$, where $\zeta_8 = e^{2\pi i/8}$ is an 8th root of unity.



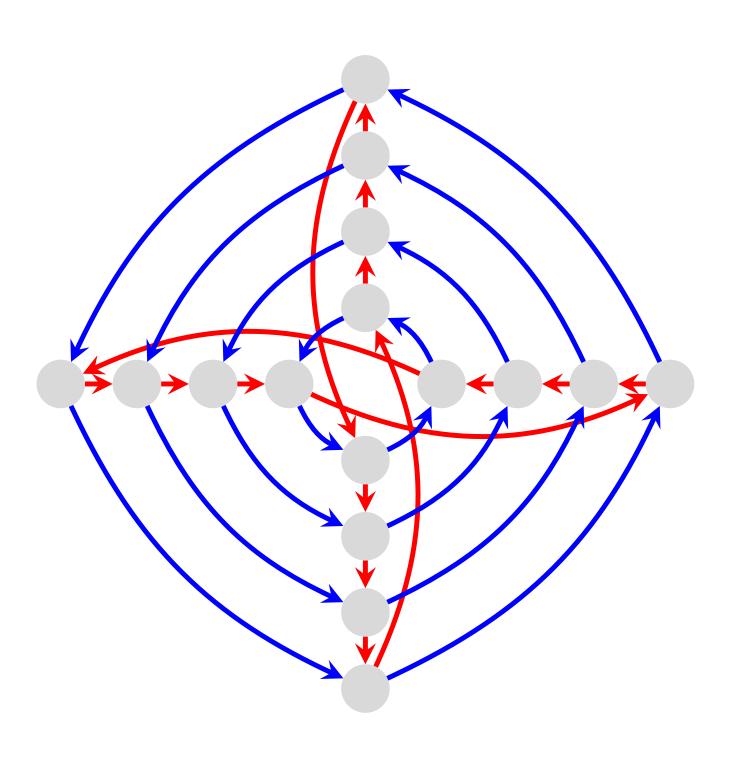
#3(a): Another way to lay out the Cayley graph for the generalized quaternion group

 $Q_{16} = \left\langle \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i, j \right\rangle,$

where $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i = e^{2\pi i/8} = \zeta_8$ is an 8th root of unity.



#3(a): Another way to lay out the Cayley graph for the generalized quaternion group $Q_{16} = \langle \zeta_8, j \rangle$, where $\zeta_8 = e^{2\pi i/8}$ is an 8th root of unity.



#3(b): Cayley table of a quotient of the generalized quaternion group

$$Q_{16} = \langle \zeta_8, j \rangle$$
, where $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i = e^{2\pi i/8} = \zeta_8$,

by the subgroup $\langle \zeta^4 \rangle = \langle -1 \rangle = \{1, -1\}.$

$\pm 1 \qquad \pm \zeta$	$\pm \zeta^2$	$\pm \zeta^3$	$\pm i$	$\pm \zeta j$	$\pm \zeta^2 i$	$\pm \zeta^3 i$

 ± 1

 $\pm \zeta$

 $\pm \zeta^2$

 $\pm \zeta^3$

 $\pm j$

 $\pm \zeta j$

 $\pm \zeta^2 j$

 $\pm \zeta^3 j$