Supplemental material: Visual Algebra (Math 4120), HW 11 $\#1(\mathbf{a})$: Action graph of $C_7 \rtimes C_3$ acting on its subgroups by conjugation. $\#\mathbf{1}(\mathbf{b})$: Action graph of $C_7 \rtimes C_3 = \langle r, s \rangle$ acting on the right cosets of $H = \langle s \rangle$ by right multiplication. #1(a): Action graph of $C_9 \rtimes C_3$ acting on its subgroups by conjugation. $\#\mathbf{1}(\mathbf{b})$: Action graph of $C_9 \rtimes C_3 = \langle r, s \rangle$ acting on the right cosets of $H = \langle s \rangle$ by right multiplication. #3(a): Action graph and fixed point table of $\mathrm{Dic}_6=\langle r,s\rangle$ acting on itself by conjugation. | 1 | r | r^2 | s | $r^2\!s$ | $r^4\!s$ | |-------|-------|-------|----|----------|----------| | r^3 | r^5 | r^4 | rs | $r^3\!s$ | $r^5\!s$ | | | 1 | r | r^2 | r^3 | r^4 | r^5 | s | rs | r^2s | r^3s | r^4s | r^5s | |--------|---|---|-------|-------|-------|-------|---|----|--------|--------|--------|--------| | 1 | | | | | | | | | | | | | | r | | | | | | | | | | | | | | r^2 | | | | | | | | | | | | | | r^3 | | | | | | | | | | | | | | r^4 | | | | | | | | | | | | | | r^5 | | | | | | | | | | | | | | S | | | | | | | | | | | | | | rs | | | | | | | | | | | | | | r^2s | | | | | | | | | | | | | | r^3s | | | | | | | | | | | | | | r^4s | | | | | | | | | | | | | | r^5s | | | | | | | | | | | | | $\#3(\mathbf{b})$: Partition of $\mathrm{Aut}(\mathrm{Dic}_6)=\langle \varphi_r,\varphi_s,\omega\rangle$ into cosets of $\mathrm{Inn}(\mathrm{Dic}_6)$. $Inn(Dic_6) = \langle \varphi_r, \varphi_s \rangle$ $\operatorname{Inn}(\operatorname{Dic}_6)\omega$ 1 r^2 \bigcap_{r^4s} 1 r^2 r r^2s r^4s Id ω \bigcap_{r^5} \bigcap_{r^3s} \bigcap_{r^5s} \bigcap_{r^3} $\mathop{\bigcirc}_{rs}$ r^5 r^4 r^3s r^5s rs1 r^2 r^2 r r^2s r^4s r^2s rs r^4s $\varphi_r \omega$ \bigcap_{r^3} \bigcap_{r^3} r^5 r^3s r^5 r^5s r^4 r^4 rs $\begin{pmatrix} 1 \end{pmatrix}$ () 1 r^2 r^2 r r^2s s r^4s r r^2s s φ_{r^2} $\varphi_{r^2}\omega$ \bigcap_{r^3} r^5 r^4 r^3s r^5s r^5 r^4 rs() 1 r^2 r^2 r r^2s r^4s r^2s rss $\varphi_f \omega$ φ_s \bigcap_{r^3} r^5 r^3s r^5s r^5 r^4 rs \bigcap_{1} 1 r^2 r^2 r^2s r r^4s r^2s rss φ_{rs} $\varphi_{rs}\omega$ \bigcap_{r^3} r^5 r^4 r^3s r^5s r^4 r^5 rs() 1 r^2 r^2 r r^2s r^4s r r^2s ss $\varphi_{r^2s}\omega$ \bigcap_{r^3} r^5 r^3s rs r^5s r^5 r^4 #3(b): Action graph and fixed point table of $G = \operatorname{Aut}(\operatorname{Dic}_6) = \langle \varphi_r, \varphi_s, \omega \rangle$ acting on $S = \operatorname{Dic}_6$, where ω is the outer automorphism defined by $$\omega \colon \operatorname{Dic}_6 \longrightarrow \operatorname{Dic}_6, \qquad \omega(r) = r, \quad \omega(s) = s^{-1} = r^3 s.$$ | 1 | r | r^2 | S | $r^2\!s$ | $r^4\!s$ | |-------|-------|-------|----|----------|----------| | r^3 | r^5 | r^4 | rs | $r^3\!s$ | $r^5\!s$ | | | 1 | | | | | | | | | | | | |------------------------|---|---|-------|-------|-------|-------|---|----|--------|--------|--------|--------| | | 1 | r | r^2 | r^3 | r^4 | r^5 | s | rs | r^2s | r^3s | r^4s | r^5s | | Id | | | | | | | | | | | | | | $arphi_r$ | | | | | | | | | | | | | | $arphi_{r^2}$ | | | | | | | | | | | | | | $arphi_s$ | | | | | | | | | | | | | | φ_{rs} | | | | | | | | | | | | | | $arphi_{r^{2_{\!s}}}$ | | | | | | | | | | | | | | ω | | | | | | | | | | | | | | $\varphi_r \omega$ | | | | | | | | | | | | | | $arphi_{r^2}\omega$ | | | | | | | | | | | | | | $arphi_s\omega$ | | | | | | | | | | | | | | $\varphi_{rs}\omega$ | | | | | | | | | | | | | | $arphi_{r^2\!s}\omega$ | | | | | | | | | | | | | $\#3(\mathbf{c})$: Cayley graph and subgroup lattice of $\mathrm{Aut}(\mathrm{Dic}_6) = \langle \varphi_r, \varphi_f, \omega \rangle \cong D_6$. $\#3(\mathbf{d})$: Action graph and fixed point table of the action of $\mathrm{Aut}(\mathrm{Dic}_6) = \langle \varphi_r, \varphi_s, \omega \rangle$ on the conjugacy classes of Dic_6 . | | $\operatorname{cl}(1)$ | $\operatorname{cl}(r^3)$ | $\operatorname{cl}(r)$ | $\operatorname{cl}(r^2)$ | $\operatorname{cl}(s)$ | $\operatorname{cl}(rs)$ | |-------------------------------|------------------------|--------------------------|------------------------|--------------------------|------------------------|-------------------------| | Id | | | | | | | | $arphi_r$ | | | | | | | | $arphi_{r^2}$ | | | | | | | | $arphi_s$ | | | | | | | | $arphi_{rs}$ | | | | | | | | $arphi_{r^{2_{\!s}}}$ | | | | | | | | ω | | | | | | | | $arphi_r \omega$ | | | | | | | | $arphi_{r^2}\omega$ | | | | | | | | $arphi_s\omega$ | | | | | | | | $arphi_{rs}\omega$ | | | | | | | | $arphi_{r^{2_{\!s}}}\!\omega$ | | | | | | |