
Weekly schedule: Math 4120, Spring 2025

• WEEK 1: 1/8–1/10. No in-person class. Watch the YouTube videos:

– Lecture 1.1, Groups, symmetry, and Cayley graphs
– Lecture 1.3, Group presentations

This covers the Chapter 1 slides (pp. 1–13, and 23–34). Quiz 1 next Tuesday. HW 1 due
next Friday.

Summary & key ideas. We introduced Cayley graphs, and saw several examples of
groups: the symmetries of a rectangle, and of a triangle. These define algebraic relations.
The same group can have very different looking Cayley graphs depending on generating
sets. We learned how to label Cayley graphs with actions. This motivated the idea of a
group presentation, which encodes the Cayley graph by listing the generators and alge-
braic relations.

To do:
– Read over the slides we covered, formulate any questions you may have.
– Look at the HW 1 problems, and attempt #1–#3.
– Look ahead at the remaining Chapter 1 slides for next week.

Learn / memorize:
– The three basic properties of a group (closure, identity, inverses)
– Cayley graphs for V4 = 〈r, h〉 and the “triangle symmetry graph” D3 = 〈r, s〉 and
〈s, t〉.

– Be able to use Cayley graphs to multiply elements, compute inverses, and find rela-
tions (two paths that correspond to the same element).

– Be able to label nodes of a Cayley graph with group elements.
– Learn the presentations for groups we’ve seen (V4, C4, and Tri).

• WEEK 2: 1/13–1/17. Course overview on Tuesday. We also convered the Chapter
1 slides (pp. 14–22, 36–57) and the Chapter 2 slides (pp. 1–11). The corresponding
YouTube lectures are:

– Lecture 1.2: Groups from puzzles
– Lecture 1.4: Infinite symmetry groups
– Lecture 1.5: Cayley tables
– Lecture 1.6: The formal definition of a group
– Lecture 2.1: Complex numbers and matrices
– Lecture 2.2: Cyclic groups (0:00–1:50).

Quizzes 1 and 2 this week. HW 1 is due Friday (okay to turn in by Sunday night).

Summary & key ideas. We discussed the Rubik’s cube group, mostly just for fun, but
there is some deep group theory involved in that. We learned about infinite summetry
group. One-dimensional symmetry groups are called frieze groups, and we classifed all 7
of them. The 2D analogue of these are were “17 different types of wallpaper”, and the 3D
analogue are the 230 “crystal groups.” The quaternion group Q8 was the first abstract
group we’ve seen that doesn’t the describe symmetries or actions. By constructing Cayley
tables, we were able to see the concept of a quotient. We finally gave the formal definition
of a group, and several examples of “things that look like groups but aren’t”, illustrating
why a formal definition is needed.

Moving into Chapter 2, we reviewed complex numbers, learned about roots of unity
and how to factor xn − 1 using cyclotomic polynomials. We finished by seeing how to
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represent V4 with matrices.

To do: Read over the slides, formulate any questions you may have. Familiarize yourself
with the presentations of all of the groups we have seen. Finish HW 1.

Learn / memorize:
– How to multiply elements in Q8.
– Presentations for groups we’ve seen (V4, D3, Q8).
– Be able to differentiate various groups we’ve seen from their Cayley tables. One good

way is to count the number of times the identity appears on the main diagonal (the
# of g ∈ G for which g2 = 1).

– The formal definition of a group.
– The formal definition of a the order of a group, and the order of an element.
– The definition of the nth roots of unity, and which ones are primitive.

• WEEK 3: 1/20–1/24. Two lectures covering the Chapter 1 slides (pp. 48–52) and the
Chapter 2 slides (pp. 1–36). The corresponding YouTube lectures are

– Lecture 2.2: Cyclic groups (1:51–33:26)
– Lecture 2.3: Dihedral groups
– Lecture 2.4: Abelian groups

Quizzes 3 and 4 this week. HW 2 due Friday (can turn in Sunday night).

Summary & key ideas. We defined cyclic groups, both additively as Zn = 〈1〉 and
multipliatively as Cn = 〈r〉. Finite cyclic groups describe rotations of an n-gon. The fully
symmetry groups of n-gons are the dihedral groups Dn. We saw how to represent the
group Cn and Dn with 2 × 2 matrices using roots of unity. There are infinite version of
both of these: C∞ ∼= Z and D∞ both occured as frieze groups.

We introduced the notion of a cycle graph, which contains all of the maximal cyclic
subgroups in G. This gives a very different picture of the group vs. a Cayley graph, but
both are useful. We saw how to construct the direct product of two groups, and prove
that Zn × Zm ∼= Znm iff gcd(n,m) = 1. We stated the big theorem that every finite (and
finitely generated) abelian group is a direct product of cyclic groups. We saw two ways to
classify these: by “prime powers”, and “elementary divisors.”

To do: Read over the slides, formulate any questions you may have. Familiarize yourself
with the presentations of all of the groups we have seen. Finish HW 2.

Learn / memorize:
– When does 〈k〉 generate Zk (or equivalently, 〈rk〉 generate Cn).
– The cycle graphs for Dn and Q8.
– How to construct a cycle graph given a group.
– How to construct Cayley graphs and presentations for Dn.
– How to represent Cn and Dn with 2× 2 matrices over C.
– That Zn × Zm ∼= Znm iff gcd(n,m) = 1.
– How to write a complete list of all abelian groups of some fixed order. (I recommend

the “prime power” classification.)
– Be able to list every group of order 4, 6, and 8, and draw their Cayley graphs.

• WEEK 4: 1/27–1/31. Two lectures covering the Chapter 2 slides (pp. 37–74). The
corresponding YouTube lectures are

– Lecture 2.5: Groups of permutations
– Lecture 2.6: Symmetric and alternating groups
– Lecture 2.7: Dicyclic and diquaternion groups.

Quizzes 5 and 6 this week. HW 3 due Friday (can turn in Sunday night).
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Summary & key ideas. We introducted permutations, and several ways of encoding
them, with cycle notation being our go-to method. We learned about even vs. odd permu-
tations. The symmetric group Sn consists of all n! permutations, and the alternating group
An consists of all n!/2 even permutations. We saw a number of ways to arrange Cayley
graphs of S4 on various Archimedean solids, and explored different ways to generated Sn.
Finally, we stated Cayley’s theorem: every finite group is isomorphic to a collection of
permutations. We saw two algorithms for how to construct such permutations: one from
a Cayley graph, and another from a Cayley table.

We learned about permutation matrices, and how our previous observation of how
there were two canonical ways to label a permutahedron (Cayley graph for Sn) with
permutations (swap coordinates, vs. swap numbers) can be realized by right-multiplying
row vectors vs. left-multiplying column vectors.

We generalized the quaternion group Q8 = {±1,±i,±j,±k} by replacing i =
√
−1 =

ζ4 = e2πi/4 with a larger (even) root of unity ζn, to define the dicyclic group Dicn =
〈ζn, j〉 = 〈r, s〉. In these groups, all non-powers of r = ζn (i.e., elements of the form rks)
have order 4. Then, we saw another to extend the quaternion group: starting with the
canonical matrix representations Q8 = 〈R4, S〉 and Dn = 〈Rn, F 〉 add in the reflection ma-
trix F to get the diquaternion group, DQ8 = 〈i, j, f〉 = 〈R4, S, F 〉. If n = 2m, then we can
do both of these to get the generalized diquaternion group DQn = 〈ζn, j, f〉 = 〈Rn, S, F 〉.

To do: Read over the slides, formulate any questions you may have. Familiarize yourself
with the Cayley graphs of Dicn and DQn.

Learn / memorize:
– How to compose permutations and find their order, and inverses.
– The definition of Sn and An and basic properties (e.g., nonabelian, trivial center,

their sizes).
– Sn is minimally generated by n−1 adjacent transpositions, or by a transposition and

an n-cycle: Sn = 〈(12), . . . , (n n−1)〉 and Sn = 〈(12), (12 · · ·n)〉.
– How to determine the parity of a permutation (even vs. odd).
– Be able to construct the Cayley graph of Dicn = 〈r, s〉. Know that |r| = n and
|ris| = 4 for all i = 0, . . . , n.

• WEEK 5: 2/5–2/9. Two lectures covering the Chapter 2 slides (pp. 75–114). The
corresponding YouTube lectures are

– Lecture 2.8: Semidihedral and semiabelian groups
– Lecture 2.9: Semidirect products, intuitivitely
– Lecture 2.10: Examples of semidirect products
– Lecture 2.11: Groups of matrices
– Lecture 2.12: Other finite groups

Quizzes 7 and 8 this week. HW 4 due Friday (can turn in Sunday night).

Summary & key ideas. We explored how to “rewire” the inner cycle of the Cayley
graph for Dn to define new groups. If n is a power of 2, then there are two new ways to
do this, leading to the semidihedral and semiabelian groups, respectively. We saw how
to represent all of these groups with 2 × 2 matrices involving roots of unity. They are
all generated by the “reflection matrix” F , and a 2 × 2 diagonal matrix with ζn in the
(1, 1)-entry. The difference is in the (2, 2)-entry, which could be ±ζn or ±ζ̄n.

Moving on, we reviewed direct products, and explored a visual “inflation method” to
construct a Cayley graph of A×B from graphs of A and B, respectively: inflate B-nodes
like “balloons” and stick in A-Cayley graphs, and re-connect nodes across balloons. A
semidirect product results if we “rewire” A-graphs (an automorphism) before inserting
them.
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We explored semidirect products of cyclic groups. We saw that if n = 2m, then there
are four semidirect products of Cn with C2: the abelian group Cn o C2, dihedral group
Dn, semidihedral group SDn, and semiabelian group SAn

We saw how if n = 2m is even, then Dn is isomomorphic to a direct product of two
proper subgroups. We discussed groups of matrices, where the coefficients come from a
field – a set of numbers where we can add, subtract, multiply and divide. Examples of
groups of matrices include the general linear (det 6= 0) and special linear (det = 1) groups,
and affine groups. An example that will reappear is SL2(Z3), a group of order 24, that is
also isomorphic to the binary tetrahedral group, 2T, an order-24 subgroup of the Hamilto-
nians (like the quaternions but with coefficients from R). We briefly discussed the goals
of breaking up groups into “building block groups”, and the surprising fact that there are
so many p-groups. We finished with a fun contest: how many groups are there of order
2048.

To do: Familiarize yourself with the Cayley graphs of Dicn, DQn, DQ8, SD8, and SA8,
and the standard matrix representations of Dn, Dicn, DQn, SDn, and SAn. Understand
how to “rewire” a Cayley graph of Cn, how to iterate this process, and why Aut(Cn) ∼= Un.
Be able to construct a semidirect product CnoCm, for certain n and m that you are given
(not all will work). Read over the slides, formulate any questions you may have.

Learn / memorize:
– Know that Dn

∼= Cn o C2, and if n is even, then Dn
∼= Dn/2 × C2.

– Be able to recognize Cayley graphs of groups that are semidirect products (when it
is obvious from inspection; it may not alway be).

– Be able to construct the subgroup lattices of C4, V4, C6, amd D3.
– Given a Cayley graph of Dn, SD8, SA8, or Cn × C2, be able to write down a group

presentation.
– Know how to construct the groups Dicn, DQn, SDn, and SAn with 2× 2 matrices.

• WEEK 6: 2/10–2/14. Two lectures covering the Chapter 3 slides (pp. 1–34). The
corresponding YouTube lectures are

– Lecture 3.1: Subgroups
– Lecture 3.2: Subgroup lattices
– Lecture 3.3: Cosets
– Lecture 3.4: Normalizers and normal subgroups (0:00–11:27).

Quizzes 9 and 10 this week. HW 5 due Friday (can turn in Sunday night).

Summary & key ideas. We started the chapter on subgroups, and saw the concept of a
subgroup lattice, which will be important throughout the class. We also saw the subgroup
lattices of the groups of order 4 and those of order 6. We proved that the intersection of
subgroups is a subgroup, and learned about the one-step subgroup test.

We learned that all subgroups of a cyclic group are cyclic. Next, we learned about cosets
– every subgroup H ≤ G partitions G into left cosets, and right cosets, though these may
be different. The normalizer of H is the union of left cosets that are right cosets – in class,
these were the “blue cosets.” Moreover, H is a normal subgroup if every left coset is a right
coset. Note that we always have H ENG(H) EG. The index of H is [G : H] := |G|/|H|,
the number of left (or right) cosets of H. Another caveat: xH = Hx does not necessarily
imply xh = hx for all h ∈ H. However, every group G has a center, which is the subgroup
Z(G) of elements that commute with everything. We often like to label the edges in a
subgroup lattice with the index, and this is multiplictive, in that [G : K] = [G : H][H : K].

To do:
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– Keep learning your subgroup lattices!!!
– Practice writing down the algebraic definitions that we learned in class (the left coset
xH, the right coset Hx, the index [G : H], and the normalizer NG(H), the center
Z(G)).

– Be able to prove some of the basic statements that we did in class. For example,
that sets like index-2 subgroups are normal, that all cosets have the same size, that
xH = H ⇔ x ∈ H, or that [G : K] = [G : H][H : K].

– Be able to write out a formal proof that certain subsets are subgroups, such as an
intersection ∩Hα, the center Z(G), the normalizer NG(H), and a conjugate subgroup
xHx−1.

– Understand visually, why if a and b are in the same coset of H, then aH = bH, and
be able to prove it.

Learn / memorize:
– Given a subgroup lattice and subgroupsH andK, be able to identify their intersection
H ∩K and what the generate, 〈H,K〉.

– Our “boring but useful coset lemma”: xH = H iff x ∈ H.
– Given a subgroup H ≤ G, be able to partition G by the left cosets of H, and by the

right cosets, and to find the normalizer – all by just using the Cayley graph.
– Given a subgroup lattice of G, be able to label each edge with the corresponding

index, [H : K].
– Know which particular subgroup is the center Z(G) for all of our familiar examples

of groups.
– Be able to construct the subgroup lattices of C4, V4, C6, D3, C8, D4, Q8.
– Be able to construct the subgroup lattice of a cyclic group Zn.
– Given a subgroup lattice and subgroupsH andK, be able to identify their intersection
H ∩K and what the generate, 〈H,K〉.

– Given a subgroup H ≤ G, be able to partition G by the left cosets of H, and by the
right cosets, and to find the normalizer – all by just using the Cayley graph.

– Given a subgroup lattice of G, be able to label each edge with the corresponding
index, [H : K].

– Know which particular subgroup is the center Z(G) for all of our familiar examples
of groups.

– Be able to prove that if [G : H] = 2, then H EG.

• WEEK 7: 2/17–2/21. Two lectures covering the Chapter 3 slides (pp. 35–86). The
corresponding YouTube lectures are

– Lecture 3.4: Normalizers and normal subgroups (11:27–37:57)
– Lecture 3.5: Subgroup diagrams
– Lecture 3.6: Conjugate subgroups
– Lecture 3.7: Products of subgroups
– Lecture 3.8: Quotient groups

Quizzes 11 and 12 this week. HW 6 due Friday (okay to turn in by Sunday night).

Summary and big ideas: Given H ≤ G, the proportion of left cosets of H that are right
cosets (i.e., the index [G : NG(H)] of the normalizer NG(H) in G) meausures how close/far
a subgroup is to being normal. We also studied conjugate subgroups, and learned the very
important tidbit: the number of conjugate subgroups is the index of the normalizer. In
many cases, we can identify the conjugacy classes and normalizers simply by inspecting the
subgroup lattice. Certain subgroups are always normal, such as unicorns, those contained
in the center, and those of index 2.

We saw two subgroups of order 16 that had the same subgroup lattice. Conjugacy
classes of subgroups look like “fans”, and their “bases” are always normal. This means
that simply group have a very restrictive structure, and we saw the lattice of A5 as an
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example. We also looked at conjugate subgroups algebraically, starting with the important
fact that aH = bH need not imply Ha = Ha, but it does imply that Ha−1 = Hb−1. This
gave us a nice way to find conjugate subgroups on a Cayley graph.

Next, we learned that if A normalizes B (i.e., aB = Ba for all a ∈ A), then AB is a
subgroup of G. A weaker but more common condition is: if at least one of A or B is
normal, then AB ≤ G.

We formalized the notion of a quotient: G/N is a group iff N EG. Specifically, G/N is
the set of left (or right) cosets, and we define aN · bN := abN . This works iff N is normal,
and is the very important concept of the operation being well-defined. We proved that
G/N is a group if and only if N is normal.

To do:
– Three ways to check if a subgroup H is normal: showing ghg−1 ∈ H for all g ∈ G is

often the easiest.
– How to read the “reduced” subgroup lattices that I call “subgroup diagrams,” which

are used by GroupNames and LMFDB.
– Practice determining the conjugacy classes of subgroups using the lattices, by inspec-

tion. In particular, be able to identify normal subgroups – G, 〈e〉, those of index 2,
etc. “unicorns,” and the “base of a conjugate fan”.

– Practice finding the normalizer of a subgroup using the lattice, purely by inspection.
– Practice finding conjugate subgroups using a Cayley graph.
– Practice identifying the subgroup NH in a lattice, given subgroups N,H ≤ G (say
N EG).

– Practice taking the quotient of G by a normal subgroup, using a Cayley graph (col-
lapse the left cosets).

– Learn how to prove that multiplication of cosets is well-defined.

Learn / memorize:
– Be able to recognize the subgroup lattices of some of our larger familiar groups:
C4 × C2, C3

2 , A4, Dic6, DQ8, SA8.
– The size of a conjugacy class of H is the index of its normalizer: clG(H) = [G :
NG(H)].

– How to multiply cosets in a quotient group: aN · bN = abN . Also, meomrize the
definition (concept) of what it means for the binary operation aN · bH := abN to be
well-defined.

– G/N is a group iff N EG.

• WEEK 8: 2/24–2/28. Two lectures covering the Chapter 3 slides (pp. 87–106), and
the Chapter 4 slides (pp. 1-24). The corresponding YouTube lectures are

– Lecture 3.9: Conjugate elements
– Lecture 3.10: Centralizers
– Lecture 4.1: Homomorphisms
– Lecture 4.2: Embeddings and quotients
– Lecture 4.3: The fundamental homomorphism theorem. (0:00–9:54)

Quizzes 13 and 14 this week. HW 7 due Friday (okay to turn in by Sunday night). Midterm
1 next Tuesday.

Summary and big ideas: Two elements x and y are conjugate if x = gyg−1 for some
g ∈ G. A theme in mathematics is conjugate elements have the same structure. We showed
the conjugate elements have the same order, and saw visual interpretations in frieze and
dihedral groups. This allowed us to classify conjugate classes of elements in D5 and D6.
We also saw the following relationship: the size of the conjugacy class clG(x) is equal to
the index of its centralizer, CG(x), which is analogous to a result for subgruops: the size
of the conjugacy class clG(H) is equal to the index of its normalizer, NG(H). Soon, we
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will see why these are actually special cases of a broader theorem.

A homomorphism φ : G → H is a structure-preserving map between two groups. If
φ is 1-to-1, then H arises a subgroup of G. If φ is onto, then H arises as a quotient.
The kernel of a homomorphism is the set of elements that get mapped to the identity,
and this is a normal subgroup. We stated and the fundamental homomorphism theorem:
G/Ker(φ) ∼= Im(φ), and proved part of it (well-definedness and injectivity).

To do:
– Practice finding the conjugacy classes of an element, when you a priori know its

centralizers, and vice-versa.
– Be able to partition a group by the conjugacy classes of the elements.
– Practice writing down definitions of the new concepts without looking at your notes.

Learn / memorize:
– | clG(h)| = 1 iff h ∈ Z(G). (Be able to prove this.)
– Learn the proof that z ∈ G is central iff its conjugacy class has size 1.
– Memorize how the elements of Dn are partitioned into conjugacy classes – the cases

of n being even and odd are different.
– Know that two permutations in Sn are conjugate iff they have the same cycle type.
– Learn the basic definitions: homomorphism, isomorphism, image, kernel.
– Learn the statement of the FHT theorem.

• WEEK 9: 3/3–3/7. One lecture covering the Chapter 4 slides (pp. 25–46). The
corresponding YouTube lectures are

– Lecture 4.3: The fundamental homomorphism theorem. (9:55–36:00)
– Lecture 4.4: Subgroups of quotient groups
– Lecture 4.5: Quotients of quotient groups

Midterm 1 Tuesday. Quiz 15 Thursday. HW 8 due Friday (okay to turn in by Sunday
night).

Summary and big ideas:
We finished the proof of the FHT (homomorpihsm and surjectivity). As a corollary,

every homomorphism can be factored as a quotient followed by an embedding. We saw
how to apply the FHT to show that G/N ∼= H. The FHT is the first of four “isomorphism
theorems.” Loosely speaking, the FHT says that “every homomorphism image is a quo-
tient.” The correspondence theorem characterizes the subgroups of a quotient. Specifically,
the subgroups of G/N are of the form H/N , where N ≤ H ≤ G. There are several nice
visualization of this: the subgroup lattice of G/N can be formed by “chopping everything
off below N”, and then all of its properties (normal subgroups, conjugacy classes, intersec-
tions, subgroup index, etc.) are inherited from the lattice of G. Another way to visualize
this, which will be explored in HW 8, is with our “shoebox diagrams” where shoeboxes
represent cosets. The third isomorphism theorems is the fraction theorem, which charac-
terizes quotients of quotients (“chop off the lattice twice”).

To do:
– Be able to explain in simple terms what the FHT correspondence, and fraction the-

orems tell us about the structure of a quotient group.
– Practice deducing properties about a subgroup lattice from what we know about

smaller groups that arise as quotient.

Learn / memorize:
– Learn the statement of the FHT, correspondence, and fraction isomorphism theorems.
– Learn the proofs of the FHT, correspondence, and fraction theorems.
– Be able to prove that Z/nZ ∼= Zn using the FHT.
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– Memorize what it means for a binary operation and/or homomorphism to be well-
defined, and under what conditions you need to verify this in a proof.

– Make sure you have memorized the subgrop lattices of our smallish groups.
– Memorize the definition of a homomorphism, and its key property, φ(ab) = φ(a)φ(b).

• WEEK 10: 3/10–3/14. Two lectures covering the Chapter 4 slides (pp. 47–95). Cor-
responding YouTube lectures:

– Lecture 4.6: Subquotients
– Lecture 4.7: Automorphisms
– Lecture 4.8: Inner and outer automorphisms
– Lecture 4.9: External products and holomorphs
– Lecture 4.10: Internal products
– Lecture 4.11: Homomorphisms in surprising locations

Quizzes 16 and 17. HW 9 due Friday (okay to turn in on the last day of Spring break).

Summary and big ideas:
The diamond theorem characterizes a duality of subquotients inherent in subgroup

lattices. Next, we looked at several consequences of the isomorphism theorems: if H ≤
Sn has an odd permutation, then exactly half of its permutations are odd. Next, we
moved onto commutators, which can be thought of as the “nonabelian parts” of a group.
These generate the commutator subgroup G′, and the quotient G/G′ is the largest abelian
quotient of G. This also has a nice subgroup lattice interpretation.

We formalized the concept of an automorphisms, which are isomorphisms from a group
to itself. This allowed us to extend the Chapter 2 concept of “structure-preserving
rewiring” from cyclic groups to all groups, and we saw several examples: V4 and D3.
It also allowed us to construct semidirect products like V4oB. The set of automorphisms
forms a group Aut(G). The inner automorphisms are those that are conjugations, e.g.,
g 7→ x−1gx, and these form a normal subgroup Inn(G) ∼= G/Z(G). In other words: “two
elements, x and y determine the same inner automorphism iff they differ by a central
element: x = yz for some z ∈ Z(G).” Automorphisms that are not inner are called outer
and the outer automorphism group is the quotient Out(G) := Aut(G)/ Inn(G). Examples
of outer automorphisms include any automorphism of an abelian group, the map f 7→ rf
that “rotates” the axes in Dn (even n), and any nontrivial permutation of {i, j, k} in Q8.

We saw how to define a semidirect product AoθB algebraically, where θ : B → Aut(A).
We also learned that G = NK is (i) isomorphic to N ×K iff both N and K are normal,
and N ∩K = 〈e〉, and (ii) isomorphic to N oK iff N is normal and N ∩K = 〈e〉, and in
this case, θ is an inner automorphism. This gave us a way to identify direct and semidirect
products from the subgroup lattice by inspection alone: find two subgroups, N and H,
that generate G, intersection trivially, and at least one is normal.

Finally, we saw some surprisingly places where homomorphisms arise, including cal-
culus, differential equations, logrithms, systems of equations, and trig identities. This
structure underlies a lot of mathematics, even if we aren’t usually aware of it.

To do:
– Be able to identify the commutator subgroup G′ and abelianization G/G′ simply by

inspecting the subgroup lattice.
– Finish the details of the proof that G/Z(G) ∼= Inn(G); it’s just a straightforward

application of the FHT.
– Get good at determining whether G is a semidirect or direct product of two of its

subgroups simply by inspecting the subgroup lattice.

Learn / memorize:
– Learn the proofs of the isomorphism theorems.
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• WEEK 11: 3/24–3/28. Two lectures covering the Chapter 5 slides (1-46). Correspond-
ing YouTube lectures:

– Lecture 5.1: G-sets and action graphs
– Lecture 5.2: Five features of group actions
– Lecture 5.3: Two theorems on orbits
– Lecture 5.4: Examples of group actions

Quizzes 18 and 19. HW 10 due Friday (okay to turn in on Sunday).

Summary and big ideas: We introduced the concept of a group action: a homomor-
phism φ : G → Perm(S). This should be thought of as a “group switchboard”: every
element g ∈ G has a “button”, and pressing the g-button rearranges the set S. The only
rule is that “pressing the a-button and then the b-button has the same effect as pressing the
ab-button.” We saw several examples of this with D4, like how it acts on a set of “binary
squares”, how it acts on itself by multiplication, or by conjugation, and how it acts on its
subgroups by conjugation. These all result in action graphs, which can be thought of as
generalization of a Cayley graphs.

A group action φ : G→ Perm(S) endows the underlying set S with an algebraic struc-
ture, and such a set is called a G-set. This generalizes the concept of a group. In fact,
G-sets are to groups as how action graphs are to Cayley graphs.

Every action has five fundamental features. Three are “local”: given s ∈ S, its orbit
orb(s) is the connected component in the action graph, and its stabilizer stab(s) are the
elements of G that fixes it. We can also take a group element g ∈ G, and define its fixator
fix(g) to be the set of s ∈ S that it fixes. The best way to visualize these is to construct
a “fixed point table”, and look at the rows and columns. There are two “global features”:
the kernel Ker(φ) is the set of “broken buttons”, also just the intersection of the stablizers.
The set of fixed points, Fix(φ), are the elements in S that don’t get moved by anything;
this is also the intersection of all fix(g).

We stated proved two fundamental theorems about orbits: (i) the orbit-stabilizer the-
orem: that |G| = | orb(s)| · | stab(s)|, for any s ∈ S, and (ii) the orbit counting theorem:
the number of orbits is the average size of fix(g), i.e., the “average number of checkmarks
per row in the fixed point table”.

We then considered 4 standard ways that a group can act on its features: G acts
on (i) its elements by multipliction, (ii) its elements by conjugation, (iii) its subgroups
by conjugation, and (iv) cosets of a fixed H ≤ G by multipliction. In each case, we
interpreted our “five fundamental features” in this setting, as well as the orbit-stabilizer
and orbit counting theorems. In many cases, we got new theorems with very little work.
For example, as special cases of the orbit-stabilizer theorem, we got | clG(g)| = [G : CG(g)]
and | clG(H)| = [G : NG(H)].

For the last of these four actions—G acting on the cosets of some H ≤ G, the action
graph can be constructed from collapasing the Cayley graph of G by the right (not left!)
cosets of H. We saw a preview of how every transitive G-set (i.e., every connected action
graph) can be realized as collapsing G by the cosets of some subgroup in this manner.

To do:
– Given a group action, be able to determine the orbits, stabilizers, fixators, as well as

the kernel and set of fixed points.
– Get good at the “group switchboard analogy”, and how to interpret our “five funda-

mental features” in that setting.
– Be able to collapse a Cayley graph by the right cosets of a subgroup, and understand

what group action this is an action graph of.
– Review our four common actions: G acting on itself by multiplication, or conjuga-

tion, on its subgroup by conjugation, or cosets of a fixed H ≤ G by multipliction. For
each one, learn what our “five features” are, and if they are known by more familiar
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algebraic terms.

Learn / memorize:
– The formal mathematical definitions of our five fundamental features: orb(s), stab(s),

fix(g), Ker(φ), and Fix(φ) – from the concept, not from memory. Know which is a
subset of S and which is a subgroup of G.

– How to quickly recognize our “five fundamental features” by inspection, in terms of
the action graph, and fixed point tables.

– The formal statements of the orbit-stabilizer and orbit-counting theorem.
– Learn the proof of the orbit-stabilizer theorem.
– Be able to construct a fixed point table, and learn how to read off the stabilizers,

fixators, kernel, and fixed points from it.
– Use the orbit-counting theorem to determine the number of orbits of an action by

the average size of a fixator.

• WEEK 12: 3/31–4/4. Two lectures covering the Chapter 5 slides (47-109). Corre-
sponding YouTube lectures:

– Lecture 5.6: Action equivalence and G-set isomorphism
– Lecture 5.7: Transitive actions
– Lecture 5.8: Simply transitive actions
– Lecture 5.9: Equivariance and G-set isomorphism
– Lecture 5.10: Normalizers of p-groups (0:00–13:20).

Quizzes 20 and 21. HW 11 due Friday (okay to turn in on Sunday).

Summary and big ideas:
We also observed that the automorphism group Aut(G), and its normal subgroup

Inn(G), naturally act on G. A subgroup is characteristic if it is preserved by every auto-
morphism. This is a stronger condition than normality. Examples include the center Z(G),
the commutator subgroup G′, and the Frattini subgroup Φ(G), which is the intersection
of the maximal subgroups.

We formalized the notion of what it means for two actions to be “equivalent:” there
must be a bijection between the sets, and an isomorphism between the groups, that make
a certain diagram commute. A special case of action equivalence occurs when the isomor-
phism is the identity map, and this defines a G-set isomorphism, or equivarant bijection.
If the bijection is weakened to a surjection, then the result is a G-set homomorphism. This
can be used to formalize how “every left action has an equivalent right action.” Recall
how earlier in the class, we saw how Sn acts on permutations of 123· · ·n two ways: where
(ij) swaps the i and j coordinates, or the digits i and j. One of these is the result of a
right action of Sn, and the other, (an equivalent) left action.

A action is free if there are no nontrivial “loops” in the action graph. It is transitive
if there’s only one orbit. Actions that are both of these are simply transitive, and the
resulting action diagrams have the structure of a Cayley graph. We classified transitive
and simply transitive actions (see the book for a proof):

– Every transitive action (connected action graph) is isomorphic to G acting on the
cosets of some subgroup H (the stabilizer of some s ∈ S) by multiplication. The
action graph is the result of “collapsing” the Cayley graph by the right cosets of
some subgroup H .

– Every simply transitive action is isomorphic to G acting on itself by multiplication,
i.e., the action graphs are just Cayley graphs.

Actions of G acting on themselves by multipliction is a useful technique for proving a
few results about subgroups of small index: (i) if G has no subgroup of index 2, then any
subgroup of index 3 is normal, and (ii) if [G : H] = p for the smallest prime dividing |G|,
then H is normal. Simply transitive actions arise whenever we have a regular tiling, and



11

we saw a number of examples of simply transitive actions that arise from tilings – finite,
affine, and hyperbolic.

We defined the group of G-set automorphisms of a transitive G-sets, and these can be
thought of as symmetries of the action graph. We stated (see book for proof) that it was
isomorphic to NG(H)/H, where H = stab(s). We also briefly saw the concept of a G-set
homomorphism.

We gave a preview to the three Sylow theorems, which tell us a lot about a group G of
order |G| = pnm, where p - m is prime.

To do:
– Go back and look at all of the pretty picture on action equivalence, simply transitive

actions, and tilings.
– Understand the difference between action equivalence and G-set automorphism.

Learn / memorize:
– Inner vs. outer automorphisms, examples of each (e.g., Q8, D3, D4), and be able to

prove that G/Z(G) ∼= Inn(G).
– Learn the results of the statements of several theorems we proved about normal

subgroups: (i) if G has no subgroup of index 2, then any subgroup of index 3 is
normal, and (ii) if [G : H] = p for the smallest prime dividing |G|, then H is normal.

– The definition of action equivalence, and how it differs from G-set isomorphism.
– The difference between isomorphisms, homomorphism, and automorphisms of G-sets.
– That AutG(S) ∼= NG(H)/H, for S = H\G.

• WEEK 13: 4/7–4/11. One in-person lecture Tuesday covering the Chapter 5 slides
(pp. 110–138). Corresponding YouTube lectures:

– Lecture 5.10: Normalizers of p-groups (13:21–35:18).
– Lecture 5.11: The first two Sylow theorems
– Lecture 5.12: The third Sylow theorem (0:00–34:41)

Asynchronous class Thursday. Watch the following lectures, covering the Chapter 8 slides
(pp. 1–18).

– Lecture 5.12: The third Sylow theorem (34:48–43:01)
– Lecture 8.1: Rings and their substructures
– Lecture 8.2: Examples of rings

HW 12 due Friday (okay to turn in on Sunday).

Summary and big ideas: The three Sylow theorems tell us a lot about a group G of
order |G| = pnm, where p - m is prime. Before we stated these, we proved a few basic
results about p-groups, which are subgroups of order pn. If a p-group G acts on a set S,
then |Fix(φ)| ≡ |S| modulo p. The main utility of this lemma is that by setting up a
particular group action, we get that in any group G, a (non-maximal) p-subgroup H must
have a normalizer that is strictly bigger than H. That is, H cannot be fully unnormal,
unless |H| = pn.

A “maximal” p-subgroup (i.e., of order pn) is called a Sylow p-subgroup. The first Sylow
theorem says that p-groups of all possible sizes exist, and they’re nested into “towers” in
the subgroup lattice. The second Sylow theorem says that the top of these towers (the
Sylow p-subgroups) form a single conjugacy class. We proved the first theorem. Along the
way, we took a “mystery group” of order 12, and deduced as much as we could about its
structure just from its size, and the Sylow theorems.

We stated and proved the 2nd Sylow theorem (all Sylow p-subgroups are conjugate),
and then the 3rd Sylow theorem: the number np of Sylow p-subgroups divides m (where
|G| = pn ·m) and is equivalent to 1 modulo p. Then, we saw how to use this to establish
that groups of particular orders are not simple – all that is needed is to show that np = 1
for some prime p.
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A ring is an additive abelian group with an additional binary operation (multiplication),
that satisfies the distributive law. Loosely speaking, rings are sets where we can add,
subtract, and multiply, but not necessarily divide. Rings can be commutative (rs = sr for
all r, s ∈ R) or noncommutaitve, and they may or may not have a multiplicative identity
element 1. There are three types of “substructures” of interest:

– subgroups (closed under + and −),
– subrings (also closed under ∗), and
– ideals (closed under ∗ from any r ∈ R).

In a noncommutative ring, there can be a distinction between left, right, and two-sided
ideals (or just “ideals”). The subring lattice of R is just the subgroup lattice, with sub-
groups colored depending on whether they are ideals, subrings that aren’t ideals, or sub-
groups that aren’t subrings.

There are 11 rings of order 4, and we saw all of them. The eight that have additive
subgroup Z2

2 all have distinct subring lattices. We explored more examples of rings. The
Hamiltonians are defined as “quaternions but with real coefficients.”

To do:
– Be able to interpret the statements of the first Sylow theorem in a subgroup lattice,

and describe them in simple terms (e.g., “tower of p-subgroups”).
– Practice using the 3rd Sylow theorem to show that there are no simple groups of

order n, for certain fixed n.
– Be able to read and construct subring lattices, and the difference between ideals,

subrings, and subgroups.
– Practice describing examples of ideals in various rings. For example, (2), (x), and

(2, x) in Z[x], vs. in Q[x]. Or 〈2〉 vs. (2) in Z, and in Z[x].

Learn / memorize:
– The definitions of p-subgroup and Sylow p-subgroup.
– Normalizers of p-subgroups always grow (i.e., are never fully unnormal), unless they’re

Sylow.
– Learn the statement of the three Sylow theorems, and how to use it.
– A ring, and what it means to be commutative, have identity, etc.
– The definition of left, right, and two-sided ideals, and how to define the ideal gener-

ated by a set, I = (X).

• WEEK 14: 4/14–4/18. Midterm 2 Tuesday. One lecture covering Chapter 8 slides
(pp. 19–29), Chapter 6 (16-24). Corresponding YouTube lectures (none for the Chapter
6 material):

– Lecture 8.3: Units and zero divisors
– Lecture 8.4: Ring homomorphisms (0:00–17:42)

HW 13 due Friday (can turn in next week).

Summary and big ideas: We finished with the classification of finite simple groups,
which was finally completed in 2004 after 50 years and over 10000 pages. For any group
G and ring R, we can define a group ring, RG.

Elements in a ring that have multiplicative inverses are called units. If the product
of two nonzero elements is zero, then those are called zero divisors. We saw example of
various kinds of rings: fields, division rings (fields and skew fields), and integral domains.
We showed that finite integral domains are fields, and that in integral domains enjoy the
cancelation property: if ax = ay, then x = y.

A subgroup I ⊆ R is an ideal if it is invariant under multiplication. There are left,
right, and two-sided ideals. Two-sided ideals (or just ”ideals”) are to rings what normal
subgroups are to groups. We saw several examples of ideals in polynomial rings, such as
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(x), (2), and (x, 2) in both Z[x] and Q[x]. A ring homomorphism is a group homomor-
phism φ : R → S such that φ(xy) = φ(x)φ(y) for all x, y ∈ R. The kernel I = Ker(φ) is
always normal, and the quotient R/I is a ring. We already know it is an additive group
– the sum of cosets is (r+ I) + (s+ I) = r+ s+ I. We also showed that multiplication is
well-defined: (r + I)(s+ I) = rs+ I. We defined a ring homomorphism, and the kernel.

Learn / memorize:
– Units and zero divisors in a ring. Know examples of both, and examples of elements

that are neither.
– Types of rings: integral domains, division ring (fields and skew fields).

To do:
– Watch the 3blue1brown video on actions and the monster group.
– There were a lot of new definitions introduced – make sure you can write them down

formally.
– Practice writing quotient rings and using both binary operations. That is, what is

the sum of x+ I and y+ I. What is their product? Do not write them as xI and yI!

Week 15: 4/21–4/25. Two asynchronous lectures covering Chapter 8 slides (pp. 29–63).
Corresponding YouTube lectures:

– Lecture 8.4: Ring homomorphisms (17:42–0:00)
– Lecture 8.5: The ring isomorphism theorems
– Lecture 8.6: Maximal ideals
– Lecture 8.7: Finite fields

HW 14 due Friday. Final exam next Monday.

Summary and big ideas:
We proved that the kernel of a ring homomorphism is a two-sided ideal. Then, we saw

the four ring isomorphism theorems, which are analogous to the isomorphism theorems
for groups. The proofs basically involve showing that a group homomorphism is also a
ring homomorphism. We went over these, but the full proofs will be left for HW.

A (proper) ideal I is maximal if there are no other ideals J satisfying I ( J ( R. By
the correspondence theorem, I is maximal iff R/I is simple (no nonzero proper ideals), and
we showed that a commutative ring is simple iff it is a field. We saw a number of example
of maximal ideals, and determine their quotient fields: Z/(p) ∼= Zp, Z[x]/(x, p) ∼= Zp,
Q[x]/(x) ∼= Q, and F[x, y]/(x, y) ∼= F.

By the correspondence theorem, an ideal M ⊆ R is maximal iff R/M is simple, and if
R is commutative, this is equivalent to R/M being a field. Zorn’s lemma says that every
nonempty poset in which every chain has an upper bound has a maximal element. This
is equivalent to the axiom of choice, and it can be used to show that every ideal I ( R
is contained in a maximal ideal. This rests on the fact that ideals cannot contain units,
and so any union I1 ⊆ I2 ⊆ · · · will also be a proper ideal. This is in stark contrast to
subgroups, in which the union of a chain H1 ⊆ H2 ⊆ · · · of proper subgroups need not be
proper. An example of this is the Prüfer group, consisting of the pn-th roots of unity, for
all n ∈ N.

The characteristic of a field, char(F) is the minimal n such that n1 = 1 + · · ·+ 1 = 0,
or zero if there is no such n. If char(F) is finite, then it must be prime. Every finite field
has the form Fp[x]/(f), for some irreducible polynomial f(x).

Henceforth, assume R to be commutative. By thinking of a finite field K as an Fp-vector
space, taking a basis, and counting elements, we immediately conclude that |K| = pn. Sim-
ilarly, we can deduce that if K ⊆ L are finite fields of order pn and pm, then n divides
m. Soon, we’ll prove the a degree-n polynomial can have at most n roots. For now,
that implies that any finite subgroup of the multiplictive group of a field must be cyclic.
(Otherwise, it would contain a copy of Cq ×Cq for some prime, which would give q2 roots
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to the polynomial f(x) = xq − 1).

Learn / memorize:
– Make sure you can prove the isomorphism theorems for rings, assuming the isomor-

phism theorems for groups.
– Know how to construct the finite field Fpn .

To do:
– Know examples of maximal ideals in various fields, and what their quotient fields are.
– There were a number of very short proofs of basic results. Make sure you can do

these on your own, as they’ve come up on exams.
– Practice adding and multiplying elements in finite fields: Fq = Fp[x]/(f), where f is

a degree-n irreducible polynomial. Familiarize yourself with the abelian groups Fq
and F×q .

– Study for the final exam and ask any questions that you have.


