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Motivating example: Th-cell differentiation

White blood cells or leukocytes are in the immune system and fight diseases and infections.

One subtype are the lymphocytes, which includes the natural killer (NK) cells, B cells, and T
cells, all which have different cellular functions.

The T-cells circulate throughout our bodies in the lymph fluid, looking for cellular
abnormalities, infections, and diseases.

Helper T-cells (Th-cells) are a certain type of T-cells. They begin as näıve, or Th0 cells, and
then differentiate into one of two phenotypes:

1. Type 1 are the Th1 cells which fight intracellular bacteria and protozoa.

2. Type 2 are the Th2 cells which fight extracellular parasites.

Malfunctions of immune responses involving Th1 phenotypes can result in autoimmune
diseases, whereas malfunctions involving Th2 phenotypes can result in allergic reactions.

The biochemical signals that determine Th1 and Th2 differentiation act as a bistable switch,
which permits either GATA3 or T-bet to be expressed, but not both. This was modeled
using a 23-node Boolean network in Mendoza et. al (2006).
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Boolean model of Th-cell differentiation (Mendoza, 2006)

x1 “ GATA3 f1 “ px1 _ x21q ^ x22

x2 “ IFN-β f2 “ 0
x3 “ IFN-βR f3 “ x2

x4 “ IFN-γ f4 “ px14 _ x16 _ x20 _ x22q ^ x19

x5 “ IFN-γR f5 “ x4

x6 “ IL-10 f6 “ x1

x7 “ IL-10R f7 “ x6

x8 “ IL-12 f8 “ 0
x9 “ IL-12R f9 “ x8 ^ x21

x10 “ IL-18 f10 “ 0
x11 “ IL-18R f11 “ x10 ^ x21

x12 “ IL-4 f12 “ x1 ^ x18

x13 “ IL-4R f13 “ x12 ^ x17

x14 “ IRAK f14 “ x11

x15 “ JAK1 f15 “ x5 ^ x17

x16 “ NFAT f16 “ x23

x17 “ SOCS1 f17 “ x18 _ x22

x18 “ STAT1 f18 “ x3 _ x15

x19 “ STAT3 f19 “ x7

x20 “ STAT4 f20 “ x9 ^ x1

x21 “ STAT6 f21 “ x13

x22 “ T-bet f22 “ px18 _ x22q ^ x1

x23 “ TCR f23 “ 0
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Analyzing the T helper cell model

The 23-node Th-cell Boolean model has a state space of size 223 “ 8, 388, 608 nodes.

A Boolean model of the segment polarity genes in Drosophila melanogaster has 60 nodes,
and a state space of size 260 « 1.15ˆ 1018.

In the previous lecture, we modeled time-delays and dilution & degradation by adding a
number of Booleans variables.

This can causes the state space to grow enormously, though in many cases, this shouldn’t
affect the qualitative nature of the dynamics.

In this lecture, we’ll see how large Boolean models can be “reduced” to much smaller models
in a way that preserves the number of fixed points.

Other methods have been developed for asynchronous Boolean or logical models that
preserve more general attractors.
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A motivating example

Toy model of the lac operon

fM “ R R inhibits mRNA transcription
fP “ M P is translated from lac mRNA
fB “ M B is translated from lac mRNA

fR “ A A inactivates the repressor protein
fA “ L^ B A is synthesized by lactose and β-galactosidase
fL “ P lac permease transports lactose into the cell

Here is the wiring diagram:

M B R

P L A

We won’t show the state space because it’s large (64 nodes), but it has two fixed points,
both of which are biologically reasonable:

pM,P,B,R,A, Lq “ p0, 0, 0, 1, 0, 0q and p1, 1, 1, 0, 1, 1q .

Our goal is to “reduce” this model in a way that in some senes, preserves the fixed points.
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A motivating example (cont.)

Let’s eliminate P

fM “ R
fP “ M
fB “ M

fR “ A
fA “ L^ B
fL “ P

M B R

P L A

At equilibrium, Pptq “ Ppt ` 1q “ fPpxptqq “ Mptq.

Thus, we can replace every instance of P with M:

fM “ R
fP “ M
fB “ M

fR “ A
fA “ L^ B
fL “ M

M B

L A

R

This reduced network has two fixed points: pM,B,R,A, Lq “ p0, 0, 1, 0, 0q, p1, 1, 0, 1, 1q.

Since P “ M, we can recover the fixed points of the original network.
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A motivating example (cont.)

Let’s eliminate B

fM “ R
fB “ M

fR “ A
fA “ L^ B
fL “ M

M B

L A

R

At equilibrium, B “ fB “ M, so we can replace every instance of B with M.

Thus, we can replace every instance of P with M:

fM “ R
fB “ M

fR “ A
fA “ L^M
fL “ M

M

L A

R

This reduced network has two fixed points: pM,R,A, Lq “ p0, 1, 0, 0q, p1, 0, 1, 1q.

Since B “ P “ M, we can recover the fixed points of the original network.

pM,P,B,R,A, Lq “ pM,M,M,A, L^M,Mq “ p0, 0, 0, 1, 0, 0q, and p1, 1, 1, 0, 1, 1q .
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A motivating example (cont.)

Let’s eliminate A

fM “ R

fR “ A
fA “ L^M
fL “ M

M

L A

R

At equilibrium, A “ fA “ L^M, so we can replace every instance of A with L^M:

fM “ R

fR “ L^M “ L_M
fA “ L^M
fL “ M

M

L

R

There are two fixed points of this reduced network: pM,R, Lq “ p0, 1, 0q, p1, 0, 1q.

Since B “ P “ M, A “ L^M, we can recover the fixed points of the original network by
back-substituting.

pM,P,B,R,A, Lq “ pM,M,M,R, L^M, Lq “ p0, 0, 0, 1, 0, 0q, and p1, 1, 1, 0, 1, 1q .
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A motivating example (cont.)

Let’s eliminate L

fM “ R

fR “ L_M
fL “ M

M

L

R

At equilibrium, L “ fL “ M, so we can replace every instance of L with M:

fM “ R

fR “ M _M “ M
fL “ M

M R

There are two fixed points of this reduced network pM,Rq “ p0, 1q, p1, 0q.

Since L “ B “ P “ M and A “ L^M “ M, we can recover the steady-states of the original
network by back-substituting.

pM,P,B,R,A, Lq “ pM,M,M,R,M,Mq “ p0, 0, 0, 1, 0, 0q, and p1, 1, 1, 0, 1, 1q .
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A motivating example (cont.)

Let’s eliminate R

fM “ R

fR “ M
M R

At equilibrium, R “ fR “ M, so we can replace every instance of R with M:

fM “ M “ M

fR “ N
M

There are two fixed points of this reduced network M “ 0, 1.

Since L “ B “ P “ M and A “ L^M “ M, we can recover the steady-states of the original
network by back-substituting.

pM,P,B,R,A, Lq “ pM,M,M,M,M,Mq “ p0, 0, 0, 1, 0, 0q, and p1, 1, 1, 0, 1, 1q .
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General reduction

Reduction steps

1. Simplify the Boolean functions and wiring diagram.

1.1 Reduce / simplfy Boolean expressions using Boolean algebra.

1.2 Remove unnecessary edges from the wiring diagram.

2. Delete vertices xi with no self-loop (equivalently, fxi doesn’t depend on xi ), by doing the
following:

2.1 For all vertices y such that xi ÝÑ y , substitute fxi into xi :

fy px1 . . . , ¨ ¨ ¨ xi ¨ ¨ ¨
looomooon

pos. xi

, . . . , xnq becomes fy px1 . . . , ¨ ¨ ¨ fxi ¨ ¨ ¨
loooomoooon

pos. xi

, . . . , xnq .

2.2 Replace edges v ÝÑ xi ÝÑ y by v ÝÑ y and remove xi (and all edges to/from xi ).

Exercise

In Step 2.2 above, how should you replace replace edges of the form:

v xi y

v xi y

v xi y
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General reduction: an example

Consider the Boolean network f pxq “ px2, px1 ^ x3q _ x2, x1q. 1 2

3

Let’s remove x3 “ x1. The new Boolean functions are

h1px1, x2q “ f1px1, x2, x3q “ f1px1, x2, x1q “ x2 ,
h2px1, x2q “ f2px1, x2, x3q “ f2px1, x2, x1q “ px1 ^ x1q _ x2

However, x1 ^ x1 “ 0, and so

h2px1, x2q “ px1 ^ x1q _ x2 “ 0_ x2 “ x2 .

The reduced Boolean network is thus hpx1, x2q “ px2, x2q
1 2

To find the fixed points, we must solve the system hi “ xi for i “ 1, 2:

"

h1px1, x2q “ x2 “ x1

h2px1, x2q “ x2 “ x2 .

Since x2 ‰ x2, there are no fixed points in the reduced BN, and thus none in the original BN.
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General reduction: an example

Consider the Boolean network:

f “ px5 _ x2 _ x4, x1 ^ x3, x2, x2, x1 _ x4q.

1 2 3

5 4

Remove x5 “ x1 _ x4:

f “ ppx1 _ x4q _ x2 _ x4, x1 ^ x3, x2, x2q

“ px1 _ x2 _ x4, x1 ^ x3, x2, x2q .

1 2 3

4

Remove x4 “ x2 :

f “ px1 _ x2 _ x2, x1 ^ x3, x2q “ px1 _ x2, x1 ^ x3, x2q

1 2 3

Remove x3 “ x2:

f “ px1 _ x2, x1 ^ x2q “ px1 _ x2, x1 ^ x2q

1 2

This yields the system:

$

’

’

’

&

’

’

’

%

h1px1, x2q “ x1 _ x2

h2px1, x2q “ x1 ^ x2

x3 “ x2

x4 “ x2

x5 “ x1 _ x4

The reduced system ph1, h2q has 2 fixed points:

px1, x2q “ p1, 0q, p0, 1q.

Thus, the original system has two fixed points:

px1, x2, x3, x4, x5q “ p1, 0, 1, 1, 1q, p0, 1, 0, 0, 0q.

M. Macauley (Clemson) Reduction of Boolean models Math 4500, Spring 2025 13 / 21

mailto:macaule@clemson.edu


Boolean model reduction in Macaulay2

We want polynomials in variables x1, . . . , x5, over the field F2, and x2
i “ xi :

R = ZZ/2[x1,x2,x3,x4,x5] / ideal(x1^2-x1, x2^2-x2, x3^2-x3, x4^2-x4, x5^2-x5);

For convenience, let’s define a|b :“ a` b ` ab and a&b :“ a ˚ b:

RingElement | RingElement :=(x,y)->x+y+x*y;

RingElement & RingElement :=(x,y)->x*y;

Input the Boolean model f “ pf1, f2, f3, f4, f5q “ px5 _ x2 _ x4, x1 ^ x3, x2, x2, x1 _ x4q:

f1 = x5 | (1+x2) | x4;

f2 = (1+x1) & (1+x3);

f3 = 1+x2;

f4 = 1+x2;

f5 = x1 | x4;

Typing (f1,f2,f3,f4,f5) gives the following output:

(x2x4x5+x2x4+x2x5+x2+1, x1x3+x1+x3+1, x2+1, x2+1, x1x4+x1+x4)
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Boolean model reduction in Macaulay2

Let’s eliminate x5 “ x1 _ x4, which appears in the function f1.

f1=sub(f1,{x5=>f5});

Now, typing (f1,f2,f3,f4) gives the following output:

(x1x2x4+x1x2+x2x4+x2+1, x1x3+x1+x3+1, x2+1, x2+1)

Let’s eliminate x4 “ x2, which appears in the function f1.

f1=sub(f1,{x4=>f4});

Typing (f1,f2,f3) gives the following output:

(x1x2+x2+1, x1x3+x1+x3+1, x2+1)
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Boolean model reduction in Macaulay2

Let’s eliminate x3 “ x2, which appears in the function f2.

f2=sub(f1,{x3=>f3});

Typing (f1,f2) gives the following output:

(x1x2+x2+1, x1x2+x2+1)

gens gb ideal(f1+x2, f2+x2) gives the following output:

(x1+x2+1)

which means that x1 “ x2.

Back-substituting x3 “ x2, and x4 “ x2, and x5 “ x1 _ x4 “ x2 _ x2 “ x2 gives

px1, x2, x3, x4, x5q “ px2, x2, x2, x2, x2q,

and thus we have two fixed points of our original Boolean model:

px1, x2, x3, x4, x5q “ p1, 0, 1, 1, 1q and p0, 1, 0, 0, 0q.
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Finding the fixed points of the T helper cell model

x1 “ GATA3 f1 “ px1 _ x21q ^ x22

x2 “ IFN-β f2 “ 0
x3 “ IFN-βR f3 “ x2

x4 “ IFN-γ f4 “ px14 _ x16 _ x20 _ x22q ^ x19

x5 “ IFN-γR f5 “ x4

x6 “ IL-10 f6 “ x1

x7 “ IL-10R f7 “ x6

x8 “ IL-12 f8 “ 0
x9 “ IL-12R f9 “ x8 ^ x21

x10 “ IL-18 f10 “ 0
x11 “ IL-18R f11 “ x10 ^ x21

x12 “ IL-4 f12 “ x1 ^ x18

x13 “ IL-4R f13 “ x12 ^ x17

x14 “ IRAK f14 “ x11

x15 “ JAK1 f15 “ x5 ^ x17

x16 “ NFAT f16 “ x23

x17 “ SOCS1 f17 “ x18 _ x22

x18 “ STAT1 f18 “ x3 _ x15

x19 “ STAT3 f19 “ x7

x20 “ STAT4 f20 “ x9 ^ x1

x21 “ STAT6 f21 “ x13

x22 “ T-bet f22 “ px18 _ x22q ^ x1

x23 “ TCR f23 “ 0
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Reducing the T helper cell model

If we eliminate the variables in the order, x23, x21, x20, . . . , we get

Variable Boolean function Polynomial function
x1 “ GATA3 h1px1, x22q “ x1 ^ x22 h1px1, x22q “ x1x22 ` x1

x22 “ T-bet h22px1, x22q “ x1 ^ x22 h22 “ x1x22 ` x22

There are three fixed points:

p0, 0q: GATA3 and T-bet are inactive, the “signature” of Th0 cells.

p0, 1q: Only T-bet is active, the signature of Th1 cells.

p1, 0q: Only GATA3 is active, the signature of Th2-cells.
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Application: Modeling time delays and degradration & dilution

In the last lecture, we saw how to add Boolean variables to model time delays and loss of
concentration due to degradation / dilution.

Consider the following model of the lac operon (slightly modified from last lecture) that
assumes that β-galactosidase takes several time-steps to degrade.

Example model

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

fM “ A

fA “ pB ^ Lmq _ L

fB “ M _
`

B ^ B
Ó

3

˘

f
B

Ó
1
“ M ^ B

f
B

Ó
2
“ M ^ BÓ

1

f
B

Ó
3
“ M ^ BÓ

2

B

BÓ
1

BÓ
2

BÓ
3

A

M

L

Lm

Do you see why the precise number of BÓ

i variables is unimportant, regarding the number
and qualitative nature of the fixed points?
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Other reduction methods

The reduction methods in this lectures is from A. Veliz-Cuba (2011), and the subject of
Chapter 6 in Robeva (2015).

In several papers (2013, 2015), Veliz-Cuba et al. reduce Boolean networks by transforming
them to larger AND-NOT networks, where methods become easier.

In 2013, a reduction method for asynchronous Boolean networks that preserves attractors
(not just fixed points) was done by R. Albert et al. in several papers.

A reduction method for (asynchronous) logical networks was done by A. Naldi et al. in 2009.

A 2023 paper by G.A. Argyris shows to to reduce Boolean networks with “backwards
equivalence.”
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