BRAIDS AND JUGGLING PATTERNS

MATTHEW MACAULEY
MICHAEL ORRISON

Abstract

Suppose we juggle an n-ball siteswap pattern as we walk forward. The paths
of the balls will trace out a braid in 3-space with n strings. A braid can be rep-
resented algebraically as an element of a braid group. Braid groups give us a
way to study the topology of juggling patterns.

1 Prelimaries

1.1 The Braid Group

Definition 1.1 Consider two planar parallel segments X and Y in R® each
containing n distinct points, {z;} and {y;}. An n-braid is a collection of n
curves {b;}, where b; : [0,1] — R® for each b; and the following conditions
hold:

1. Each b; has one endpoint at one of the x;’s and one endpoint a y;.
2. All the b;’s are pairwise disjoint.

3. FEwvery plane parallel to X andY and normal to the plane containing them
either intersects each b; at exactly one point or is disjoint from all of them.

The easiest way to draw a braid is to draw its projection onto a plane and
denote which strand is on top at each crossing. For each braid, we can choose
a projection such that no three strands meet at any one point, and any two
strands intersect at a finite number of points. The first diagram in Figure 1 is
a braid, but the second is not because it violates the third property.

i\ —
— %

Figure 1: A braid on four strings, and an illegal braid.

¥

This will be our conventional way of drawing braids. We can put an al-
gebraic structure on the set of braids on n strings, or n-braids, with a finite
number of crossings when projected onto a plane. Any braid can be generated

by repeatedly crossing adjacent strings. Starting from one end of the braid and
moving to the other, we can list all the crossings one at a time as given by the
following rules: At any point, if the current ith strand from the bottom crosses
under the (i + 1)th strand, call it o;. If it crosses over, call it o} '. Figure 2 is
an example of this. Any braid can be expressed as a word of the ;’s and o;’s.

N —— n
n- l—m— n-1-

| — i —
2 — 2

Figure 2: The ith generator of the braid group, ¢;, and its inverse.

Two braids are considered equivalent if they can be expressed by the same
word. There are two relations that can be useful when determining whether two
braids are equivalent. The first braid relation is o;0; = 005 iff |i — j| > 2. This
is intuitive, because two crossings far enough apart can be moved horizontally
independently as shown by the diagram in Figure 3.

Figure 3: The first braid relation: o;0; = oj0; iff |i — j| > 2.

The second braid relation is 00k +10r = Og+10k0k+1. In knot theory, this
is called the third Reidemeister move, which allows a strand to be moved past
a crossing. Figure 4 gives an example of this relation.

/ —_

/

7 _

Figure 4: The second braid relation: o0k4+10% = Og+10k0k+1-

The set of all n-braids forms the braid group, and the two relations in fact
generate the braid group. Thus the braid group on n strings, denoted B,,, has
presentation

Bn=<01,---0n1 o0 =00 iff i —j| >2 i,j€{l,...,n—1} >

OkOk+10k = Ok+10k0k+1 ke{l,....,n—2}

The proof that these two relations generate the braid group is quite involved
and will not be given here. A proof can be found in Chapter 1, Section 3, of [2].

To each braid we can assign a permutation based on the order of the strings
at the end of the braid. A braid is called a pure braid if its permutation is the
identity. The identity of the braid group, the unbraid, is an example of a pure
braid. The set of all pure braids on n strings, denoted P,,, is a normal subgroup
in B,, (see Chapter 1, Proposition 4.5 in [2]).

1.2 The Crossing Invariant

There is a simple but useful braid invariant for pure braids called the crossing
number. If we number each string, then we can define cr(4, j) be the number of
times the i** string passes behind the j* string from below, minus the number
of times the i® string passes behind the jt* string from above. The crossing
number is a braid invariant for pure braids. Still, the crossing number will be
a very useful tool later in the chapter. An example of the crossing number of a
braid is given in Figure 5.

S S
3 /_ 3
s, /&/) r(1,2) =0 r(2,1) = -1
/\) zr(1,3) —1 Er(?,, = 1
s, \ s, (23)=0 a(3,2)= 0

Figure 5: An example of the crossing numbers.

2 Braids of Juggling Patterns

If we want to examine the braids of juggling patterns we have to set a standard
for the number of hands and the throwing and catching locations of the balls.
Siteswap notation does not distinguish this, and varying this will change the
flight paths of the balls and possibly the braid. We will start with a simple
one-hand model. Balls are caught at a fixed location and throws can be made
from either side.

The best way to analyze this braid is to construct it from a profile braid.
This works nicely because we can determine the over/under crossings straight
from the stack sequence. There are two types of throws that determine whether
strands cross over or under the others. Since the profile braid is determined by
the stack sequence, we need to be able to denote throws from the back from
throws from the front. We’ll use a; and w; to denote a throw from the back
and a throw from the front, respectively. The subscript refers to the height of
the throw in stack notation. Figure 6 is an example of a back throw and a front
throw in a five-ball juggling pattern. Both throws in Figure 6 correspond to a
4 in the stack sequence.

5

56— —_—

S—— —

— d——/

2 / 22—

X — 7 —
O3 0,

Figure 6: The two types of one-handed juggling throws.

Notice that a; and w; can be expressed as

Q; = 0102 ...0;

wj :al_laz_l...az._l.

We'll call the set of words generated by all jugglable braids with b balls M,, and
M,F. Elements in M,, are those that can be expressed as words in the a;’s and
elements in M} are those that can be expressed as words in the a;’s and w;’s.
M,, and M,5 are monoids. Neither M,, nor M,} forms a group because not all

elements have an inverse, but they satisfy the rest of the properties of a group.

3 Classifying Juggling Braids

It is not always possible to solve the word problem given a group with generators
and relations. In many cases there does not exist an algorithm to determine if
two words are equivalent that will terminate in finite time. This makes the task
of classifying unbraids seem daunting. However, we shall try to make progress
by looking at certain families of braids.

3.1 Unbraids

A non-trivial unbraid is a word of at least one generator that is equivalent to
the unbraid. A natural question that arises about the monoids M, and M,S
is whether or not they contain any non-trivial unbraids. It is not difficult to
show that M, does not contain any non-trivial unbraids. Every element except
the identity in M,, has at least one pair of strands (4, 5) such that cr(,5) > 0.
And it is impossible to get any pair of strands to have a negative crossing num-
ber. In order to get a non-trivial unbraid, the sum of the crossing numbers of
every pair of stands must be zero. This is impossible using just words in the «;’s.

However, this argument does not work for M,f . Right away we see that ajw;
is an unbraid, and we can concatenate this to itself to get an infinite family of
unbraids. In fact, these are not the only unbraids in M;F. One such example,
the braid wjasaswsw; in M;r , is shown in Figure 7.

We wish to classify all such unbraids. We shall start by looking at patterns
in M, or in other words, three ball patterns allowing front and back throws.

O
W,

w; a, a, W,

Figure 7: A non-trivial unbraided juggling pattern: wjasaswsws.

In the remainder of the paper, a juggling pattern will be assumed to be of this
type unless otherwise stated.

A braid will be unbraided if and only if for all distinct pairs of strands ¢ and
J, cr(i,j) = cr(4,4) = 0. In a 3-braid, we have six different crossing numbers.
Each a; or w; will change exactly ¢ crossing numbers by £1. Suppose the balls
are numbered #1,#2,and #3. An «; crosses under the first ¢ strings from the
below, so this increments each cr(1,5) by 1 for all j < ¢, assuming that the
bottom ball is labeled ball 1. An w; crosses over the first ¢ strings, so each
of these strings crosses under the bottom string from above. Thus all crossing
numbers cr(j,1) are decremented by 1.

N)

2 —\/_- 2 =/ ¥
1— 1 —
(a) Increments (b) Decrements
cr(1,2), cr(1,3) cr(2,1), cr(3,1)

Figure 8: How a3 and w» change the crossing numbers.

The crossing numbers that get changed are dependent not only on the type
of throw, but also on the current permutation of the braid. An example is given
in Figure 8. If the permutation of the balls from bottom to top is 123, and the
next throw is an as, then ball 1 crosses behind the paths of ball 2 and ball 3.
This increments cr(1,2) and cr(1,3). However, if the permutation of the balls
had been 213, then ball 2 would have crossed behind the paths of ball 1 and ball
3. A subsequent as would have instead incremented cr(2,1) and cr(2,3). Figure
3.1 shows a table that denotes how the throws affect the crossing numbers based
on the permutation.

This table shows how as and we throws affect the crossing numbers of the
braid given its current permutation. A “+” in an entry means that the cross-
ing number in that column is incremented by one if the braid permutation is
one of the two in that row. Likewise, the “—” means the crossing number is
decremented by one. The a; and w; throws are much simpler. Since such a

| Permutations | Throw | cr(1,2) cr(2,1) cr(1,3) cr(3,1) cr(2,3) cr(3,2)

123, 132 s
213, 231 s + ¥

312, 321 s ¥ ¥
123, 132 w3 - -

213, 231 ws - -
312, 321 ws - -

Figure 9: How as’s and wy’s affect crossing numbers.

throw simply switches the bottom two balls, only two crossing numbers can be
affected. If the braid permutation is ijk, then an oy will increment cr(é, j) and
an w; will decrement cr(j,4). In both cases, the resulting permutation is jik. In
conclusion, a single throw will have one of the following effects on the crossing
numbers:

1. Increment any one of the six crossing numbers.
2. Decrement any one of the six crossing numbers.

3. Increment two crossing numbers, namely one of the following pairs:
{er(1,2),er(1,3)}, {er(2,1),er(2,3)}, or {er(3,1),er(3,2)}-

4. Decrement two crossing numbers, namely one of the following pairs:
{cr(2,1),cr(3,1)}, {cr(1,2),cr(3,2)}, or {cr(1,3), cr(2,3)}.

The information in the table above can be encoded in a graph called a stack
graph. The stack graph of a b-ball juggling pattern has b! vertices — one for each
braid permutation. There is a directed path from a vertex v; to v; if and only
if it is possible to get from the permutation of v; to the permutation of v; by
throwing an aj, or wg where k < b. Algebraically, this means that there is an
element s of the symmetric group Sy of the form (k k—1 ... 2 1) such that
s :v; = v;. The stack graph of all three ball patterns is shown in Figure 10.

Each path in the stack graph has two lables which describe how the crossing
numbers can change with each throw, as described in the table in Figure 3.1.
For every edge traversed, we must choose whether the throw will be an a or an
w. For example, starting from the 123 vertex, there are two ways to get to 231:
either throw an ay or an we. The as is denoted by cr(1, %)+, which means that
we increment cr(1,2) and cr(1,3). The “*” is a wild-card. Likewise, the ws is
denoted by cr(*,1)—, which means that cr(2,1) and cr(3, 1) are decremented.

Any three-ball juggling pattern can be represented as a walk on the stack
graph. Moreover, pure braids have the nice property that they must be a cy-
cle on the stack graph. This makes the task of classifying all unbraids easier.
Readers familiar with the mathematics of juggling might notice a resemblance

Figure 10: The stack graph for three-ball juggling patterns.

between a stack graph and the state graph, which describes when two siteswap
patterns can be concatenated to form a new pattern. These two graphs have
some resemblances. In both graphs, vertices represent some kind of state, and
edges represent throws. Siteswap patterns correspond to closed loops on the
state graph, whereas any path on the stack graph corresponds with a siteswap
pattern. However, state graphs and stack graphs describe two completely dif-
ferent aspects of siteswap patterns. A great source for learning all about state
graphs is [3].

The stack graph displays a good deal of symmetry. There are two types
of edges: each vertex has one “long” edge, corresponding with an ay or ws,
going into it and one going out of it. Also, each vertex has one “short” edge,
corresponding with an «a; or w, going into it and one short edge leaving. Next
we will present several ways to set up a system of equations whose solutions will
describe all unbraids.

3.2 Setting the crossing numbers to zero.

Without loss of generality, assume that any three ball juggling pattern begins
with the permutation 123. If we keep a running total of the sum of all six
crossing numbers, then unbraids will be precisely those cycles such that the
the crossing numbers is zero. There are six pairs of crossing numbers that can
be changed with a single throw, as well as all six individual crossing numbers
that can be changed independently. Thus there are twelve possible non-empty
subsets of
{cr(1,2),cr(2,1),cr(1,3),cr(3,1),cr(2,3),cr(3,2) }

that can be changed by a single throw. An unbraid has the restriction that
each of the crossing numbers is zero. This gives us a system of six equations on

twelve variables, which we can represent by the following matrix:

1 0 0 0 -1 0 1 0 0 0 0 0
0 1 0 -1 0 0 0 1 0 0 0 0
C _ 1 0 0 0 0 -1 0 0 1 0 0 0 (1)
- 0 0 1 -1 0 0 0 0 0 1 0 0
0 1 0 0 0 -1 0 0 0 0 1 0
0 0 1 0 -1 0 0 0 0 0 0 1

Each row of the matrix represents a crossing number, and each column in
the matrix represents a way to change the crossing numbers. Observe that the
first six columns in 1 are the six rows in Table 3.1. Elements in the nullspace
of C' describe ways to traverse edges in the stack graph so that the sum of
each crossing numbers is zero. However, it is important to notice that such
an element might not necessarily be a closed path, which means that it phys-
ically cannot be juggled. The nullspace of C is six-dimensional, with basis
{X17X27X37X47X57X6} =

|
CoCOoORRROOORK
CooCORKOKRRKROO
corrROOOROROR
HHOOOOOOKRKRO
|
coorOrROOOOOR
~roooorOROOOO
—~~
[\V)
~—

Pictorially, these six elements may be realized on the stack graph as in Figure
11.

Obviously, X5 and X4 are elements in the nullspace that are not realiz-
able juggling patterns. However, it is important to understand that each basis
element has several valid realizations on the stack graph.

Definition 3.1 An unbraid class is a twelve-dimensional vector U that can be
expressed as a linear combination of X;’s such that the first six entries of U are
non-negative.

The non-negative condition ensures that there is a realization on the stack
graph. For example, the vector —X; is in the nullspace of C' but is not an un-
braid class because there is no physical meaning to making a negative number
of throws in a juggling pattern.

We shall call a realization of an unbraid class a loop if it contains a cycle using
all of its edges. Otherwise, it shall be called a fragment. The basis elements X5
and Xg can only be realized as fragments, whereas the other four can be realized
as fragments or loops. Figure 12 shows X; realized three different ways. The
first one is a fragment and the last two are loops.

3.3 Combinatorial questions

Unbraid classes bring up a lot of interesting combinatorial questions that are
not the focus of this paper and have never been looked at closely. We shall

321

132

[312)« 231

*.2)- (3,2)+

321 321

(a) Fragment (c) Another loop

Figure 12: Different realizations of the basis element X;.

mention them here for sake of completeness, and to hopefully spark interest in
this new topic. It is easy to see that the unbraid class X; has eight possible
realizations, two of which are loops. Each of these loops correspond with five
throws. We shall call the minimal length of a loop of an unbraid class the
length of the unbraid class. Here are a few interesting unknown questions about
unbraid classes:

e How many length-n unbraid classes are there?
e How many distinct loops can arise from a length-n unbraid class?
o How many ways are there to traverse a loop of a length-n unbraid class?

e How many juggling patterns can arise from a length-n unbraid class (in
other words, the number of ways to traverse up to equivalence)?

To illustrate the subtle differences in what these problems are counting, con-
sider a simple example, the length-5 unbraid classes. It is not hard to show that
there are only four, namely X;, X», X3, and X4. As mentioned above, there are
two distinct loops of X;. There are three ways to traverse, or walk, these two
loops: wi3wawi, wiajws, and aiwsw?, which are all equivalent because they
differ by cyclic shift. Therefore, only one distinct juggling pattern arises from
Xi. Checking the other length-5 unbraid classes, one can conclude that there
are four length-5 unbraid classes, and each can give rise to at most two loops,
three walks, and one juggling pattern.

3.4 Shortcomings of unbraid classes

As mentioned earlier, every realization of X5 or Xg is a fragment. However, this
does not mean that there are no unbraid classes that contain some number of
these elements. One necessary property of a juggling pattern on the stack graph
ignored by the equations in (1) and unbraid classes is that the in-degree of any
vertex equals its out-degree. The problem lies in the fact that for each possible
pair of crossing numbers that can be incremented or decremented together, there
are two different edges that can do this. In addition, each edge can correspond
to two different variables in (1), because each edge has a positive and negative
label that correspond with a and w throws, respectively. Each of the twelve
edges has two different labels, so a throw in a juggling pattern can correspond
to moving on the stack graph one of twenty-four possible ways.

3.5 The Complete System of Equations

Suppose we label the edges of the stack graph as shown in Figure 13. The short
double edges are actually two edges, and are labeled as such. For example, e;
is the edge from vertex 123 to vertex 213, while ey is the edge from vertex 213
to vertex 123.

However, we want to be able to distinguish between « and w throws. For
each edge i, let i, represent traversing that edge by an a and ¢_ represent
traversing that edge by an w. For example, the a4 edge is the edge from vertex
123 to vertex 231 where cr(1, 2) and cr(1, 3) are incremented. On the other hand,
a_ is that same edge, only cr(2,1) and cr(3,1) are decremented. Recall that
the twelve columns of the matrix in (2) represented the twelve ways two change
the crossing numbers, and we set up six equations that represented the sum of

10

Figure 13: Labeling the edges of the stack graph.

each of the six crossing numbers vanishing. We can use the same equations as
represented by the matrix C, in (1), but using these new variables. Moreover, we
can eliminate a lot of solutions that do not correspond to juggling patterns by
ensuring that the out-degree of each vertex equals its in-degree. This additional
requirement gives us the following six equations:

123 : (€1+ + 617) + (Cl+ + a,) = (€2+ + es) (C+ +c_)
213: (ea4 +ex)+ (¢ +c)=(ery +e1-)+ (a/, +a’)
231: (esy +es-)+ (by +b-) = (eat +€s-) + (a4 +a-) 3)
321: (eay +es)+(ay +a’)= (esy +es_)+ (V) +0")
132: (esy +es5-) + (by +b_) = (es +e6-) + (¢!, +)
312: (€6++€6_)+(C++(3_) = (€5++€5) (b++b)

Together, with (3) gives us a twelve equations on twenty-four variables. How-
ever, in all twelve equations, e; appears on one side of the equation if and only
if ea_ is on the other side of (3). Likewise, e24 and e;_ also come in pairs. In
fact, each of the e;y has a corresponding e;_. The following six variables can
be substituted

E1 = €14+ — €2 E3 = €34 — €4 E5 = €54+ — €6—
E2 = €24 —€1— E4 = €44 — €3— E6 = €6+ — €5—.

(4)

This simplification leads to a 12 x 18 matrix with nullspace

rr

1
S/

N
OCO0OO0COKRHFOOOOOCOOKKEHOKO
COO00O0O0OOHKHOOKHKHOKHOOK
OO0 O+RHOOOOOOHOOKOK
COHOOHROOOOHOOKOK KM
COO00O0O0OOHOHOKHKHOROKRO
CO0O00O-OOHOKKHKOOKKO
OO HOOOOOOOOOHOKKO
COHOOHOOOOOKHKHOOK KM
OHROOOROOOHOKKHOKKK R
11
HHEHOOOOOOOOOOORKHOOKR

~~

—~~

Ut

SN—r

\ LY L 7

The nullspace has a basis with the nice property that the last six non-zero
entries of the vectors can be either positive or negative and still be realized on

11

the stack graph. Also, right away we see that there are unbraids that use the
basis elements X5 and Xg. Notice that the sixth and seventh columns in (5)
correspond to length-four unbraids, as shown in Figure 14. The braid shown in
Figure 14 is an example, it is a walk of the unbraid class X; + Xo — Xy — Xg.

(1,2)-

a, a, W W,

Figure 14: A length-four unbraid.

The basis in (5) has several advantages over the basis in (2). First of all,
each basis vector in (5) is a cycle on the stack graph. We no longer have
to worry about fragments because each entry in the vectors in (5) refers to a
specific edge on the stack graph. This means that any linear combination of
basis vectors can be juggled if the first twelve entries are non-negative. However,
even though there is only one realization for each linear combination of basis
elements on the stack graph, there may be several different possible orders to
traverse the edges. In the original basis, two of the vectors were fragments and
could not be concatenated with other vectors at will. However, in both bases,
there are unbraids that cannot be represented as positive linear combinations
of the basis vectors. It would be nice to find a smallest set of vectors, if such a
finite set exists, in both (2) and (5) such that any unbraid can be represented
as a positive linear combination of basis vectors.

Another natural step is to examine not just unbraids, but also look into
when two three-ball juggling patterns yield the same braid, and when two paths
on the stack graph correspond with the same braid. Eventually, it would be
interesting to look at stack graphs of patterns of more than three-balls and see
if similar results hold. Proof techniques must be generalized, because the size of
the stack graphs grow large very quickly. The number of vertices in the graph
of a b-ball pattern is b!.

4 Adding More Balls

Thus far, we have not examined the stack graphs of patterns with more than
three balls because the size of the graph grows very quickly. A good way to
understand a larger stack graph is to collapse it into a smaller graph. For

12

any stack graph, identify two vertices if they have the same top ball in their
permutation, and remove all singleton edges. This new graph is called the
condensed graph.

312/ 132

A

| /
(a) the three-ball (b) the four-ball
condensed graph condensed graph

The labels of the vertices are omitted from the four-ball condensed graph
for clarity in Figure 4. It is easy to see why the n-ball condensed graph is
an n-simplex. The condensed graph is a good way to visualize what the stack
graphs look like with more balls. The idea is similar to how to construct a cube
from a square, a hypercube from a cube, and so forth. Observe how the three-
ball stack graph is constructed from the two-ball stack graph, which is just two
vertices and two edges. To construct the four-ball stack graph, put one copy
of the three-ball stack graph at each vertex of a 3-simplex, and add edges to
represent going between these stack graphs. Each of the twenty-four vertices has
one directed edge to a vertex in each of the other three-ball stack graphs, and
one directed edge from a vertex in each of the three-ball stack graphs. Notice
how all of these forty-eight edges correspond with the as and ws throws.

5 Further Research

The stack graphs presented in this paper represent one-handed juggling, where
throws can be made from either side. Idealy, it would be nice to model typical
two-handed juggling, where there are two throwing locations and two catching
locations. Typically, a juggler makes the catches torwards the outside of a pat-
tern and makes the throws nearer the middle of the pattern. Modeling this with
the stack notation would require two stacks that interacted. Because these ideas
are so new, this has not been examined much. Indeed, the problem of classifying
braids of juggling patterns with one hand has proven to be a difficult task. One
goal of this paper is to share a new method of describing juggling patterns and
pose a number of interesting questsion that arise, with the hopes that it will
spark the interest of other mathematicians. There are many different ways to
generalize one-handed juggling. A popular type of juggling is bounce-juggling.
More braids can arise from juggling patterns if throws can be tossed or bounced.

13

There are just a few of the ideas about this topic that may be worth exploring
in the future.

References

[1] J. Buhler, D. Eisenbud, R. Graham, C. Wright, Juggling Drops and De-
scents, American Mathematical Monthly, Volume 101, Issue 6 (Jun.-Jul.,
1994), 507-519.

[2] K. Murasugi, B. I. Kurpita, A Study of Braids, Kluwer Academic Publish-
ers, 1999.

[3] B. Polster, The Mathematics of Juggling, Springer-Verlag, 2003

[4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published
electronically at http://www.research.att.com/njas/sequences/

14

