
UNIVERSITY OF CALIFORNIA

Santa Barbara

Coxeter Theory and Discrete Dynamical Systems

A Dissertation submitted in partial satisfaction of the requirement for the

degree of Doctor of Philosophy in Mathematics

by

Matthew Macauley

Committee in charge:

Professor Jon McCammond, Co-chair

Professor Henning S. Mortveit (Virginia Tech), Co-chair

Professor Bjorn Birnir

Professor Ken Millett

April 2008

i

The dissertation of Matthew Macauley is approved

Bjorn Birnir

Ken Millett

Jon McCammond, Committee co-chairman

Henning S. Mortveit, Committee co-chairman

April 2008

Coxeter Theory and Discrete Dynamical Systems

Copyright c© 2008

by

Matthew Macauley

iii

Acknowledgments

I would like to thank the numerous people that have helped me with my

research in so many ways, including sparking ideas, listening and giving

feedback, proofreading papers, or simply just discussing ideas over coffee.

This includes, but is not limited to, the following people: Chris Barrett,

Bjorn Birnir, Bud Brown, Elena Dimitrova, Stephen Eubank, Ed Green,

Abdul Salam Jarrah, Ning Jia, Reinhard Laubenbacher, Nick Loehr, Mad-

hav Marathe, Jon McCammond, Ken Millett, Henning Mortveit, Landon

Rabern, and Anil Vullikanti.

I would also like to thank the people of the Network Dynamics and Simu-

lation Science Laboratory at Virginia Tech for introducing me to this field,

and supporting this research while I was with them at Los Alamos National

Laboratory, in Los Alamos, New Mexico and the Virginia Bioinformatics

Institute, in Blacksburg, Virginia.

Finally, I would like to thank the Fields Institute for giving me funding

to present parts of this research at the AUTOMATA 2007 workshop in

Toronto, Canada.

iv

Vita of Matthew Macauley

Education

Ph.D. Mathematics, University of California, Santa Barbara. 2008

M.A. Mathematics, University of California, Santa Barbara. 2005

B.S. Mathematics, Harvey Mudd College. 2003

Professional Employment

Research Associate, Virginia Bioinformatics Institute. 2005–2008

Teaching Associate, UCSB. Spring 2007

Teaching Assistant, UCSB. 2003-2007

Graduate Research Associate, Los Alamos National Laboratory. 2003–2004

REU Participant, Temple University. Summer 2002

Awards and invitations

Invited participant to Automata 2007: 13th International Workshop on

Cellular Automata, at the Fields Institute, Toronto, Ontario. August 2007.

Received IAEE International Conference Student Scholarship; to attend the

2006 IAEE conference in Potsdam, Germany.

2003 Mathematical Contest in Modeling, member of three-person team that

won the top honor of “Outstanding,” awarded to 11 of the 494 teams that

entered.

v

2003 Chavin Prize for best senior thesis. Awarded by the Department of

Mathematics, Harvey Mudd College.

Invited Participant to Automata 2007: 13th International Workshop on

Cellular Automata, at the Fields Institute, Toronto, Ontario. August 2007

IAEE International Conference Student Scholarship, to attend the IAEE

conference in Potsdam, Germany. June 2006

Mathematical Contest in Modeling, member of three-person team that won

the top honor of “Outstanding,” awarded to 11 of the 494 teams that en-

tered. 2003

Chavin Prize for best senior thesis. Department of Mathematics, Harvey

Mudd College. 2003

Research Interests

• Graph dynamical systems (equivalence, morphisms, stochastic sys-

tems algorithmic and complexity issues, experimental results);

• Coxeter groups, and their connections to discrete dynamical sys-

tems;

• Discrete mathematics and geometric combinatorics;

• Structure of complex networks, with applications to epidemiology;

• Discrete stochastic epidemiological models.

vi

Publications

• On enumeration of conjugacy classes of Coxeter elements.

(With H. S. Mortveit). Proceedings of the AMS. In press.

arXiv:0711.1140.

• Order independence in asynchronous cellular automata.

(With J. McCammond, H. S. Mortveit). Journal of Cellular Au-

tomata. 3 (1), 2008:37–56. arXiv:0707.2360.

• Locational market power in power markets. (With K. Atkins,

J. Chen, A. Kumar, A. Marathe). To appear in Journal of Economic

Behavior and Organization, 2008.

• Cycle equivalence of graph dynamical systems. (With H. S.

Mortveit). Submitted to Physica D, 2007. arXiv:0802.4412.

• Equivalences on acyclic orientations. (With H. S. Mortveit).

Submitted to Discrete Mathematics, 2008. arXiv:0709.0291.

• Role of network and production capacity in allocating mar-

ket power. (With J. Chen, A. Marathe). Proceedings of the Trans-

Atlantic INFRADAY Conference on Applied Infrastructure Model-

ing and Policy Analysis. College Park, MD. November, 2007.

• Locational market power in power markets. (With K. Atkins,

J. Chen, A. Kumar, A. Marathe). Proceedings of the 29th IAEE

International Conference. Potsdam, Germany. June 2006.

vii

• The mathematics of juggling (Book review). Math Horizons,

February 2004.

• Thinking outside the box, and over the elephant. (With M.

Banister, M. Smukler). The Journal of Undergraduate Mathematics

and Its Applications. 24 (3), 2003.

• Applications of Rank Functions of Graphs. In preparation.

• Update Order Instability in Graph Dynamical Systems.

(With V.S.A. Kumar, H. S. Mortveit). In preparation.

• Dynamics groups of asynchronous cellular automata. (With

J. McCammond, H. S. Mortveit). In preparation.

• A mathematical and computational study of constraint in-

duced market power. (With J. Chen, V.S.A. Kumar, A. Marathe).

In preparation.

• Automorphism groups of stochastic sequential dynamical

systems. In preparation.

Conference Presentations

Role of Network and Production Capacity in Allocating Market Power.

(With J. Chen, A. Marathe). Trans-Atlantic INFRADAY Conference on

Applied Infrastructure Modeling and Policy Analysis. College Park, MD.

viii

November, 2007.

Order Independence in Asynchronous Cellular Automata. Automata 2007.

Fields Institute, Toronto, Canada. August 2007.

Locational Market Power in Power Markets. IAEE International Confer-

ence. Potsdam, Germany. June 2006.

Volumetric Rendering and the JPEG2000 Standard. Los Alamos Student

Symposium. Los Alamos NM. August 2003.

Braids and Juggling Patterns. MAA Southern California Regional Meeting.

Claremont CA. March 2003.

Composite Materials and Jordan Algebras. Joint Mathematics Meeting.

Baltimore MD. January 2003.

Seminar Talks

An Introduction to Coxeter Theory with Applications to Complex Systems.

Virginia Tech Algebra Seminar. March, 2008.

Update Order Instability in Graph Dynamical Systems. Clemson University

Mathematics Colloquium. January, 2008.

ix

Graph Dynamical Systems, Rank Functions, and Coxeter Groups. Clemson

University Mathematics Colloquium. October 2007.

Order Independence in Asynchronous Cellular Automata. Virginia Tech

SIAM Student Research Seminar. September 2007.

Asynchronous Cellular Automata. UCSB Discrete Geometry and Combi-

natorics Seminar. May 2007.

Reductions of Dynamical Systems over Graphs. UCSB Discrete Geometry

and Combinatorics Seminar. October 2006.

Stochastic Sequential Dynamical Systems. Virginia Tech SIAM Student Re-

search Seminar. September 2006.

Game Theory and Mechanism Design in Constrained Markets. UCSB Grad-

uate Student Seminar. October 2005.

Modeling Economic Behavior. Virginia Bioinformatics Institute. Septem-

ber 2005.

Game Theory and Mechanism Design in Constrained Markets. Virginia

Tech SIAM Student Research Seminar. September 2005.

x

Mathematics of a Computer Simulation. UCSB Discrete Geometry and

Combinatorics Seminar. May 2005.

Fun Proofs on Geometric Decomposition. UCSB Graduate Student Semi-

nar. April 2005.

Dynkin Diagrams. UCSB Discrete Geometry and Combinatorics Seminar.

March 2005.

An Introduction to Hypergraph Theory. UCSB Graduate Student Seminar.

January 2005.

An Introduction to Sequential Dynamical Systems. UCSB Graduate Stu-

dent Seminar. October 2004.

Vickrey Auctions and Market Power. Basic and Applied Simulation Science

group (CCS-5), Los Alamos National Laboratory, Los Alamos NM. August

2004.

The Mathematics of Juggling. UCSB Graduate Student Seminar. April

2004.

The Axiom of Choice and Hilbert’s Third Problem. UCSB Graduate Stu-

dent Seminar. January 2004.

xi

Abstract

Coxeter Theory and Discrete Dynamical Systems

by Matthew Macauley

This dissertation is the first study to apply the theory of Cox-

eter groups to a class of discrete dynamical systems called

sequential dynamical systems, or “SDSs,” which were first

invented in the late 1990s. An SDS is defined over a graph

Y , where the vertices take on one of several states from a

finite set K, and there is a sequence of Y -local functions

FY = (Fi)i∈v[Y], which are applied sequentially to obtain the

global update function. After a brief introduction, we begin

by examining several notions of equivalence, where the choice

of functions is fixed but the update order can potentially

vary. Each of these gives rise to a corresponding combina-

torial structure called a neutral network which encapsulates

the key information about the sensitivity of the features of

the dynamics to changes in the update order. These net-

works and their properties have helped unravel new connec-

tions between SDSs and diverse fields such as hyperplane

arrangements, permutahedra, and Coxeter groups. In par-

ticular, we use existing results on Coxeter groups to prove

theorems about the dynamics of SDSs, as well as extend

xii

current results about Coxeter theory. One of the main the-

orems is a recurrence relation for the number of conjugacy

classes of Coxeter elements, via edge deletion and contrac-

tion of non-bridge edges of the Coxeter graph, and this has

a direct bearing on the number of SDS maps up to cycle

equivalence. We show how the local functions of an SDS

generate the dynamics group, which is a homomorphic im-

age of a Coxeter group, and this is insightful for the class of

SDSs that are word-independent. Upon examination of the

256 elementary asynchronous cellular automata (ACAs), we

prove that exactly 104 of them are word-independent. This

is a significant extension of a recent result that stated the

same result for 11 out of the 16 symmetric ACAs. To better

understand these systems, We study their periodic point sets

and dynamics groups. Finally, we consider SDSs where the

base graph and update order are allowed to have a certain

degree of stochasticity. We show how symmetries in the dis-

tribution of these constituents appear as symmetries in the

corresponding phase spaces, or Markov chains. Finally, we

discuss update order instability of stochastic SDSs, and give

examples of how various notions of instability measures that

arise from previous work in this dissertation are dependent

on the sparsity of the base graph, sometimes in completely

opposite ways.

xiii

Contents

List of Figures xvi

1. Introduction 1

1.1. History and motivation 1

1.2. Preliminaries 3

1.3. Group actions 6

2. Equivalence of SDSs 7

2.1. Functional equivalence 8

2.2. Dynamical equivalence 17

3. Cycle Equivalence and Coxeter Theory 19

3.1. Shifts and reflections of update orders 19

3.2. Neutral networks for cycle equivalence 22

3.3. Source-to-sink operations 25

3.4. Coxeter groups and Coxeter elements 27

3.5. The case K = F2 28

3.6. Analysis of κ(Y) and δ(Y) 31

3.7. Poset structure of κ-equivalence classes 35

3.8. A recurrence for κ(Y) 44

3.9. The Tutte polynomial 47

3.10. Examples 50

3.11. Actions of Aut(Y) 51

3.12. Connections to node-firing games and representations of

quivers 53

4. Word-independence and dynamics groups 55

xiv

4.1. Word-independence 56

4.2. Dynamics and Coxeter groups 60

4.3. Asynchronous cellular automata 64

4.4. Invariant sets 90

4.5. Dynamics groups of ACAs 92

4.6. Concluding remarks about ACAs 100

5. Stochastic Sequential Dynamical Systems 101

5.1. Preliminaries 102

5.2. Dynamical equivalence of StSDSs 104

5.3. Stabilizer subgroups 107

5.4. An example 110

6. Conclusions and Future Research 115

Appendix A. Tables of word-independent Wolfram rules 120

References 122

xv

List of Figures

2.1 The update graph U(Circ4). 9

2.2 Permutahedra, for n = 3 and n = 4, with the combinatorial

labeling. The edge labels are omitted in Π4. 13

2.3 Hyperplanes cuts corresponding with the edges {1, 2}, {2, 3}, and

{1, 3} in Y < K4. 15

3.1 The graphs C(Circ4) and D(Circ4). The dashed lines are edges in

D(Circ4) but not in C(Circ4). 23

3.2 The update graph U(K2,3). 24

3.3 The graph C(K2,3) contains the component on the left, and three

isomorphic copies of the structure on the right (but with different

vertex labels). The dashed lines are edges in D(K2,3) but not in

C(K2,3). 25

4.1 Phase spaces of an SDS with different update orders. The cycle

structure is different for the two systems, but the sets of periodic

points are the same. 60

4.2 Grid notation for Wolfram rules 68

4.3 Converting Wolfram rule 29 = 00011101 into its tag 0x-1. 69

4.4 Four major classes of word-independent Wolfram rules. 78

4.5 Three final pairs of word-independent Wolfram rules. 83

xvi

1. Introduction

1.1. History and motivation. The focus of this dissertation is on a class

of finite discrete dynamical systems called sequential dynamical systems, or

“SDSs.” An SDS consists of a graph Y where each vertex v takes on a

state xv from a finite set K, with a sequence of functions that determine a

how to update a state based on the states of its neighbors. The SDS map is

constructed by composing these functions in a particular order, and it is the

iteration of this map that determines the dynamics of the system, which is

described by the phase space. SDSs are part of a more general class of finite

discrete dynamical systems, called graph dynamical systems, where there are

fewer restrictions on how the states are updated. One classic example of a

graph dynamical system is a finite cellular automaton, or “CA.” A finite CA

is defined much like an SDS, but the underlying graph is a regular grid, such

as a circular graph, and the functions are updated in parallel, rather than

sequentially. SDSs were invented to help model complex systems where

the order that the update rules are applied plays a significant role in the

global dynamics. Moreover, they are attractive mathematical objects to

study in their own right, and have a number of connections to other areas

of mathematics. Cellular automata are typically regarded as the first type

of graph dynamical system to be studied, invented by Stanis law Ulam and

John von Neumann, while working at Los Alamos National Laboratory in

the 1940s [40]. Their primary motivation was to use them as models of

biological systems [45]. In 1969, German computer scientist Konrad Zuse

proposed that the universe is essentially one big cellular automaton [47].

1

In the 1970s, John Conway invented the Game of Life, a two-dimensional

CA, which was later popularized by Martin Gardner [16]. Beginning in

1983, Stephen Wolfram published a series of papers devoted to developing

a theory of CAs and their role in science [28, 42, 43, 44]. This is a central

theme in Wolfram’s 1280-page book A New Kind of Science, published in

2002.

The idea of a sequential dynamical system did not come to life until the

late 1990s, when the were invented by a group of scientists and mathemati-

cians, also at Los Alamos. They were part of the Simulation Science Group

at the laboratory, and had a practical need to build a generic mathemat-

ical framework for computer simulations of large-scale agent-based socio-

technological systems [6, 7, 8, 9]. In such settings, agents are represented

as vertices in a network, and edges correspond to some type of communi-

cation or contact between agents. Agents typically are in one of several

states, and the evolution of an agent’s state is a function of the states of its

neighbors. Together, the interaction of these individual agents make up the

global complex system. The goal became to mathematically and computa-

tionally capture the key properties of such a generic setting, and build an

underlying framework that could be used in diverse settings, from epidemi-

ological models to transportation networks. Thus was born the concept of

a sequential dynamical system.

Many natural questions about SDSs immediately arose, such as how sen-

sitive the dynamics are to variations in the update order, or what kind

of effects a small change in the underlying graph, such as adding or re-

moving an edge, can have on the global dynamics of the system. In the

2

past decade, much work has been done to develop the fundamentals of

SDSs [6, 7, 8, 9, 30]. There has also been a significant effort to understand

the computational, complexity and algorithmic issues involved [1, 2, 3, 4, 5].

Recently, promising connections have been made between SDSs and diverse

fields such as Coxeter groups. We develop these ideas throughout this dis-

sertation, as well as explore another relativity new area, that of stochastic

sequential dynamical systems.

1.2. Preliminaries. To begin, we will define some terms and state some

notational conventions that will hold throughout this dissertation. Let Y

be an undirected graph with vertex set v[Y] = {1, . . . , n} and edge set

e[Y]. Each vertex in Y has a vertex state from a finite set K, and so the

set of all states is Kn. In most of the SDS literature, K = F2 = {0, 1},
because this is common in applications and models. However, we shall not

make this assumption in this document unless we explicitly state otherwise.

Throughout, y will denote a state in Kn, and yi = proji(y) ∈ K will

denote the state of vertex i. Denote the 1-neighborhood of vertex i by

N1,Y (i) := {j ∈ v[Y] : {i, j} ∈ e[Y]} ∪ {i}, and set di = |N1,Y (i)| − 1, the

degree of vertex i. For any y ∈ Kn, let y[i] denote the restriction of y to

coordinates in N1,Y (i).

Definition 1.1 (Vertex function). For any i ∈ v[Y], a vertex function of

vertex i is a function fi,Y : Kdi+1 → K where the domain is the set of states

of the vertices in N1,Y (i).

Definition 1.2 (Local function). For any i ∈ v[Y], a local function of

vertex i is a function Fi,Y : Kn → Kn such that (i) Fi,Y only changes the

3

ith coordinate of y ∈ Kn, and (ii) If y and y′ agree when restricted to the

coordinates in N1,Y (1), then Fi,Y (y) = Fi,Y (y′).

It is clear from the definition that every Y -local function Fi,Y is deter-

mined by the extension of a unique vertex function fi,Y , by

(1.1) Fi,Y (y1, . . . , yn) = (y1, . . . , yi−1, fi,Y (y[i]), yi+1, . . . , yn) .

and vice-versa. We denote a sequence of vertex functions by fY = (fi,Y)ni=1

and the corresponding local functions by FY = (Fi,Y)ni=1. The graph Y is

called the base graph, or dependency graph. If Y is clear from the context,

we will omit it from the subscript of the individual functions.

Definition 1.3 (Symmetric and homogeneous functions). Let fY = (fi,Y)ni=1

be a sequence of vertex functions on Y . Then fY is said to be symmetric if

for each i,

(1.2) fi,Y (yi1, . . . , yik) = fi,Y (yπ(i1), . . . , yπ(ik)) ,

for all π ∈ Sk. Moreover, fY is quasi-symmetric if (1.2) holds for all π ∈ Sk
that fix the ith coordinate. A sequence of symmetric functions fY is said to

be homogeneous if |N1,Y (i)| = |N1,Y (j)| implies that fi,Y = fj,Y . Finally, we

say that the corresponding sequence FY = (Fi,Y)ni=1 of Y -local functions is

symmetric (or homogeneous) if fY is symmetric (or homogeneous).

Most of the SDS literature has the blanket assumption that the local func-

tions are homogeneous and symmetric. This is generally a much stronger

statement than is required. Many of the existing theorems hold as long

4

as the functions are invariant under the automorphism group of the base

graph Y . We define this more generally because sometimes the functions

are not invariant under the entire automorphism group of Y , but rather

just a subgroup.

Definition 1.4 (G-invariant functions). If G is a subgroup of Aut(Y), then

a sequence of Y -local functions FY is G-invariant if ϕ ◦ Fi = Fϕ(i) ◦ ϕ for

every i ∈ [n] and ϕ ∈ G. A sequence of vertex functions fY is G-invariant

if the corresponding sequence FY of Y -local functions is G-invariant.

We will not go back and reprove every existing SDS result with this weaker

condition, but state that Aut(Y)-invariance is precisely the property that

is being used, which trivially holds for symmetric homogeneous functions.

We will later see this explicitly for one of the central existing results.

Definition 1.5 (Update orders). Let WY be the set of all words over v[Y],

and let SY be the subset of all total orderings of v[Y], i.e., words where

every vertex appears precisely once. A word ω of length |ω| = m will be

denoted ω1ω2 · · ·ωm, (ω1, ω, . . . , ωm), (ω(1), ω(2), . . . , ω(m)), etc. We will

refer to elements of SY as simple update orders, or permutations, because

they can be canonically associated with permutations of v[Y]. Typically we

will denote words by ω and ζ , but when speaking specifically about simple

update orders, we will use π and σ. Finally, a word ω ∈ WY is fair if for

every i ∈ v[Y], πj = i for some 1 ≤ j ≤ |ω|.

Definition 1.6 (Sequential dynamical system). A sequential dynamical sys-

tem, or “SDS”, is a triple (Y,FY , ω) consisting of an undirected graph Y ,

5

a sequence of Y -local functions FY , and an update order ω ∈ WY , say of

length |ω| = m. The function defined by

[FY , ω] : Kn −→ Kn, [FY , ω] = Fωm
◦ · · · ◦ Fω1 .

is the SDS map. If ω ∈ SY , then (Y,FY , ω) is a permutation SDS.

The defining characteristic of any dynamical system is its phase space,

which represents every possible state of the system, and transitions between

them. For continuous systems, the dynamics is governed by a vector field.

For a finite dynamical system, or any function from a finite set to itself, the

phase space is simply a directed graph.

Definition 1.7 (Phase space). For a finite dynamical system φ : Kn → Kn,

the phase space, denoted Γ(φ), is the directed graph with

v[Γ(φ)] = Kn, e[Γ(φ)] = {(y, φ(y)) | y ∈ Kn} .

1.3. Group actions. There are several standard group actions that will

frequently appear throughout this dissertation. The group Sn acts on Kn

by

(1.3) σ · y = (yσ−1(1), . . . , yσ−1(n)) .

and on WY by

(1.4) σ ∗ ω = (σ(ω1), . . . , σ(ωn)) ,

6

The difference here is that in (1.3), the group element is permuting the

indices of the n-tuple, whereas in (1.4), it is permuting the values of the

entries. Frequently, we will be composing a function Φ: Kn → Kn with an

automorphism ϕ ∈ Aut(Y) ≤ Sn. This will be written Φ ◦ ϕ (or ϕ ◦ Φ),

and it is understood that ϕ is permuting the coordinates of Kn as in (1.3).

Explicitly, this is

(Φ ◦ ϕ)(y) = Φ(ϕ · y) , (ϕ ◦ Φ)(y) = ϕ · (Φ(y)) .

2. Equivalence of SDSs

In the next two sections, we will discuss three different notions of equiva-

lence between finite dynamical systems, and how they apply in the setting of

SDSs when the sequence of functions is fixed and the update order is varied.

Two maps φ, ψ : Kn → Kn are functionally equivalent if they are identical

as functions, dynamically equivalent if their phase spaces are isomorphic as

digraphs, and cycle equivalent if their phase spaces restricted to the periodic

points are isomorphic as digraphs. For each of these notions, we present

theorems that describe when two SDS maps [FY , π] and [FY , σ] are equiva-

lent. This leads to natural equivalence relations on the set SY of all simple

update orders. We will study these by defining a graph called a neutral net-

work, where the vertices correspond with collections of update orders, and

two vertices on the same connected component give rise to equivalent SDS

maps. Thus, the stability of an SDS map is encoded in the structure of the

corresponding neutral network. The number of components is a complexity

measure of the system, because counting these equivalence classes gives an

7

upper bound for the number of non-equivalent SDSs obtainable by varying

the update order. We study these combinatorial bounds and discuss their

sharpness.

In this section, we focus on functional and dynamical equivalence. The

concepts have appeared in the literature [30], but we present a new con-

struction for the neutral network for functional equivalence using hyper-

plane arrangements. This reproves an old result, and provides a connection

to the rank function of a graph, which has both a geometric and a com-

binatorial interpretation. The concept of cycle equivalence is relegated to

Section 3, where we demonstrate a connection to fields such as Coxeter the-

ory, quiver representations, and graph polynomials. We also further explore

and develop the underlying discrete mathematics.

2.1. Functional equivalence.

2.1.1. Acyclic orientations and update graphs. Two SDSs are functionally

equivalent if their SDS maps are identical as functions. For a fixed sequence

of functions FY , a natural question to ask is when does [FY , ω] = [FY , ζ]

for ω, ζ ∈ WY ? The word update graph Û(Y) provides a partial answer to

this. The vertex set of Û(Y) is WY , and two words ω 6= ζ of length m are

adjacent if they differ by a single transposition of two adjacent entries ωi

and ωi+1 such that {ωi, ωi+1} 6∈ e[Y]. The finite subgraph U(Y) of Û(Y)

induced by the vertex set SY is called the permutation update graph, or just

“update graph” and is denoted U(Y). Clearly, it is a union of connected

components of Û(Y).

8

Example 2.1. Let Circn be the graph with vertex set v[Circn] = {1, . . . , n}
and edges {i, i+ 1} modulo n. The permutation update graph U(Circ4) has

14 connected components as shown in Figure 2.1.

1243

3241

2134

4132

1423

3421

2314

4312

1234

1432

3214

2341

4123

2143

4321

1324

3124

2413

4213

1342

3142

2431

4231

3412

Figure 2.1. The update graph U(Circ4).

For now, we will discuss U(Y) rather than Û(Y). The same concepts

that hold for permutation update orders carry over to general word update

orders under slight modifications, but the notation is more cumbersome

and no additional significant insight is gained. Let ∼Y be the equivalence

relation on SY defined by π ∼Y σ if π and σ belong to the same connected

component of U(Y). We denote the equivalence class of SY containing π

as [π]Y , and the set of equivalence classes by SY/∼Y . By construction,

π ∼Y σ implies the equality [FY , π] = [FY , σ]. It follows that for a fixed

sequence of functions FY , |SY/∼Y | is an upper bound for the number of

SDS maps [FY , π] up to functional equivalence, where π ∈ SY . The next

result discusses the sharpness of this bound.

Proposition 2.2 ([29]). If fY are the boolean nor functions, defined by

nork : Fk2 −→ F2, nork(y1, . . . , yk) =
k

∏

i=1

(1 + yi) ,

9

and NorY the corresponding Y -local functions, then [NorY , π] = [NorY , σ]

holds if and only if π ∼Y σ.

Proposition 2.2 shows that for any graph Y , there exists a sequence of Y -

local functions such that |SY/∼Y | is a sharp upper bound for the number of

functionally non-equivalent permutation SDS maps obtainable by varying

the update order.

An alternative way to characterize SY/∼Y , and functional equivalence of

SDSs, is through acyclic orientations of the base graph. Orientations of Y

are represented as maps OY : e[Y] −→ v[Y] × v[Y], which may be viewed

as directed graphs. The set of acyclic orientations of Y is denoted Acyc(Y),

and we set α(Y) = |Acyc(Y)|. Every acyclic orientation defines a partial

ordering on v[Y] where the covering relations are i ≤OY
j if {i, j} ∈ e[Y] is

oriented OY ({i, j}) = (i, j). This allows us to refer to an orientation OY

as a poset. The set of linear extensions of OY contains precisely the simple

update orders π ∈ SY such that if i ≤OY
j, then i precedes j in π. Therefore,

every permutation π ∈ SY induces a canonical linear order of v[Y], and

hence an acyclic orientation Oπ
Y ∈ Acyc(Y), where Oπ

Y ({i, j}) = (i, j) if

i ≤π j and Oπ
Y ({i, j}) = (j, i) otherwise. The bijection

(2.1) fY : SY/∼Y −→ Acyc(Y) , fY ([π]Y) = Oπ
Y ,

from [34] lets us interpret an equivalence classes [π]Y as an acyclic orien-

tation. The number of equivalence classes under ∼Y is therefore given by

α(Y).

10

For OY ∈ Acyc(Y) and e = {v, w} ∈ e[Y], let O
ρ(e)
Y be the orientation

of Y obtained from OY by reversing the edge-orientation of e. Let Y ′
e and

Y ′′
e denote the graphs obtained from Y by deletion and contraction of e,

respectively, and let OY ′

e
and OY ′′

e
be the resulting orientations achieved

from OY under these operations. The bijection

(2.2) Acyc(Y) −→ Acyc(Y ′
e) ∪ Acyc(Y ′′

e)

defined by

OY 7−→

OY ′

e
O
ρ(e)
Y 6∈ Acyc(Y),

OY ′

e
O
ρ(e)
Y ∈ Acyc(Y) and OY (e) = (v, w),

OY ′′

e
O
ρ(e)
Y ∈ Acyc(Y) and OY (e) = (w, v).

(2.3)

is well-known, and shows that the quantity α(Y) can be computed through

the recursion relation

(2.4) α(Y) = α(Y ′
e) + α(Y ′′

e) ,

and this is holds for any e ∈ e[Y].

It follows immediately from (2.1) that for a fixed choice of Y -local func-

tions FY , the quantity α(Y) is an upper bound for the number permutation

SDS maps [FY , π] up to functional equivalence. By Proposition 2.2, this

bound can be sharp. As alluded to earlier, these results can be extended to

general word update orders ω ∈WY . We refer the interested reader to [35].

11

2.1.2. Permutahedra. At this time, we present an alternative construction

of the update graph U(Y), by cutting the 1-skeleton of a permutahedron

with hyperplanes through its center.

Definition 2.3 (Permutahedron). The n-permutahedron, denoted Πn, is

the convex hull of all permutations of the n-tuple (1, . . . , n) ∈ Rn.

The n-permutahedron is an (n − 1)-dimensional polytope, because em-

bedded in Rn, the vertices of Πn all lie on the hyperplane
∑n

i=1 xi = n(n−1)
2

.

The n-permutahedron has some very nice properties: it is vertex-transitive

(under the action of Sn), each edge has length
√

2, and two vertices are

adjacent iff they differ by swapping two coordinates with adjacent values.

This gives rise to the geometric labeling of the vertices and edges of Πn:

• The vertices of Πn are labeled such that two vertices are adjacent if

they differ by swapping two coordinates with consecutive values,

• An edge of Πn is labeled with the transposition (xi xj) of the values

of the two entries that are swapped.

Alternatively, the vertices and edges of Πn can be labeled as follows [46]:

• The vertices of Πn are labeled such that two vertices are adjacent if

they differ by swapping two coordinates in consecutive positions.

• An edge of Πn is labeled with a transposition (xi xj) of the values

of the two entries that are swapped.

We call this the combinatorial labeling of Πn, and this is the labeling that

we will work with primarily. The polytopes Π3 and Π4, with this labeling,

are shown in Figure 2.2. The edge labels are omitted in Π4, but it should

be clear what they are. We use the combinatorial labeling of Πn because of

12

123

132 213

231312

321

(2 3)

(2 3)

(1 2)

(1 2)

(1 3) (1 3)

(a) Π3

2143

1243

1324

2413

2314

1342

1423

1432

3142

3124

3214

2431

4231

4321

3412

3241

4123

2134

2341

1234

3421

4132

4312

4213

(b) Π4

Figure 2.2. Permutahedra, for n = 3 and n = 4, with the
combinatorial labeling. The edge labels are omitted in Π4.

several key properties: (i) its 1-skeleton is the update graph of En, the graph

on n vertices and no edges, and (ii) every transposition in Sn corresponds

to a complete set of parallel edges of Πn. From these observations, we

get a nice method for constructing the update graph U(Y). Let Hn
i,j be the

hyperplane through the center of Πn, normal to the parallel edges with label

(i j), and let vni,j be the normal vector to Hn
i,j (orientation is irrelevant).

Proposition 2.4. The update graph U(Y) can be constructed by “cutting”

the 1-skeleton of Πn by Hn
i,j for each {i, j} ∈ e[Y], i.e., removing all edges

of Πn that intersect Hn
i,j.

Let H(Y) be the hyperplane arrangement {Hn
i,j | {i, j} ∈ e[Y]}, and

C(H(Y)) be the set of chambers. It follows immediately that

(2.5) |SY/∼Y | = |C(H(Y))| .

13

From (2.1) and (2.5), we know that |C(H(Y))| = α(Y). However, this

can be computed directly, by recognizing that H(Y) is a in fact a special

arrangement known as the graphic arrangement of Y .

Definition 2.5 (Graphic arrangement). Let f1, . . . , fn be a basis for the

dual space of Rn. For a graph Y , let H(Y) be the arrangement defined by

H(Y) = {ker(fi − fj) | {i, j} ∈ e[Y]} .

H(Y) is called the graphic arrangement of Y .

From the geometric labeling of Πn, it is easy to see that a normal vector

to the hyperplane Hn
i,j is vni,j = ei − ej . Thus, using the standard basis of

the dual space of Rn, the hyperplanes in the graphic arrangement of Y are

precisely the hyperplanes {Hn
i,j} constructed to create the update graph

U(Y) from Πn. The bijection between the components C(H(Y)) of the

graphic arrangement of Y , and Acyc(Y), is well-known [33]. In summary,

we have bijections between the following sets.

C(H(Y)) ←→ Acyc(Y) ←→ SY/∼Y ←→ {[NorY , π] | π ∈ SY } .

Individually, none of these bijections are new, but the construction of the

update graph from the graphic hyperplane arrangement provides us with a

new way to link them.

2.1.3. Rank functions. We now pause to analyze U(Y) and α(Y) for a few

special cases. It is obvious that if Y is a tree with m edges, then α(Y) = 2m.

14

This is equivalent to the vectors {vni,j | {i, j} ∈ e[Y]} being linearly inde-

pendent. If Y = Circn, then α(Y) = 2n − 2. To illustrate the construction

of U(Y) by hyperplane cuts, we will consider an explicit example. If Y has

4 vertices, then U(Y) is constructed from Π4, as in Figure 2.2. Notice that

if Y contains a 3-cycle, say 1→ 2→ 3→ 1, then this corresponds to three

hyperplanes that each cut Π4 (with the combinatorial labeling) through a

pair of antipodal hexagonal faces with edge labels (1 2), (2 3), and (3 1),

as shown in Figure 2.3. The vectors {v3
1,2, v

3
1,3, v

3
2,3} form a minimal linearly

2143

1243

2314 1423

1432

2431

4231

4321

3241

4123

2134

2341

1234

3421

4132

4312

4213

2413

(1 3)

(2 3)

(1 2)

Figure 2.3. Hyperplanes cuts corresponding with the edges
{1, 2}, {2, 3}, and {1, 3} in Y < K4.

dependent set. This generalizes as follows. A 2d-gon facet of Πn corre-

sponds to a length-d cycle in Y , and a set of d vectors {vni,j} that span a

(d−1)-dimensional subspace. Removing any one edge of the length-d cycle

makes the resulting subgraph a tree, and the corresponding d − 1 vectors

{vni,j} are linearly independent. Thus, cycles in Y correspond with minimal

linearly dependent sets of vectors. Since the hyperplane arrangement H(Y)

15

associates a graph with a set of vectors, it is well-founded to define the rank

function of a graph as follows.

Definition 2.6 (Rank function of a graph). Let Y be an undirected graph

on n vertices. For every edge {i, j}, let Hn
i,j be the corresponding hyperplane

of H(Y) with normal vector vni,j. If P(Y) is the set of all subgraphs of Y

with vertex set v[Y] (i.e., formed by removing edges), then define the rank

function of Y by

rY : P(Y) −→ Z , rY (Z) = dim〈vni,j | {i, j} ∈ e[Z]〉 ,

This definition of the rank function of a graph is geometric, based upon

a set of Euclidean hyperplanes from the graphic arrangement. This makes

it potentially difficult to compute for a given graph. However, the following

proposition describes it in a purely combinatorial setting.

Proposition 2.7. If Z is a subgraph of Y with v[Y] = v[Z], then

(2.6) rY (Z) = |v[Y]| − n(Z) ,

where n(Z) is the number of connected components of Z.

Proof. We claim that rY (Z) is precisely the number of edges in a spanning

forest of Z. To see this, consider a spanning forest F with m edges. The

corresponding vectors {vni′,j′ | {i′, j′} ∈ e[F]} form a linearly independent

set, thus rY (Z) ≥ m. Moreover, since it is impossible to add an edge to

a spanning forest without introducing a cycle, every edge (vector) {i, j} ∈

16

e[Z] \ e[F] is a linear combination of edges (vectors) in e[F]. Therefore,

rY (Z) ≤ m, and we now conclude that rY (Z) ≤ m.

If Z has connected components C1, . . . Ck, then any spanning tree of Ci
has |v[Ci]| − 1 edges. The number of edges in the spanning forest is thus

|e[F]| =
k

∑

i=1

(|v[Ci]| − 1) = |v[Y]| − n(Z) ,

and this completes the proof. 2

We comment that the rank function can be defined for any matroid [13].

However, this is unnecessary in this context, and obscures the key geometric

intuition.

2.2. Dynamical equivalence. The next type of equivalence that we will

discuss is dynamical equivalence, which is weaker than functional equiva-

lence.

Definition 2.8 (Dynamical equivalence). Two finite dynamical systems

φ, ψ : Kn → Kn are dynamically equivalent if there is a bijection h : Kn →
Kn such that φ ◦ h = h ◦ ψ.

This definition is equivalent to the phase spaces Γ(φ) and Γ(ψ) being

isomorphic as digraphs. Over the discrete topology on Kn, the concepts

of dynamical equivalence and topological conjugation coincide. As with

functional equivalence, it is natural to ask how many SDS maps can be

obtained up to dynamical equivalence, given a fixed sequence of functions

FY , by varying the update order. In general, this is not known, although

17

an upper bound ᾱ(Y) can be derived. First, the following proposition must

be established.

Proposition 2.9 ([29]). If FY is a sequence of Aut(Y)-invariant Y -local

functions, then

(2.7) [FY , ϕ ∗ π] = ϕ ◦ [FY , π] ◦ ϕ−1

for all π ∈ SY and all ϕ ∈ Aut(Y).

We note that in [29], Proposition 2.9 is stated for the stronger condition

of FY being homogeneous and symmetric. However, these extra conditions

are unnecessary. As long as FY is Aut(Y)-invariant, the diagram

(2.8) Kn
Fπ(n)

//

ϕ

��

Kn

ϕ

��

Fπ(n−1)
// · · ·

Fπ(1)
// Kn

ϕ

��

Km
Fϕ(π(n))

// Km
Fϕ(π(n−1))

// · · ·
Fϕ(π(2))

// Km

commutes, and the bottom row is easily seen to be both sides of the equation

in (2.7). As a consequence of Proposition 2.9, the group Aut(Y) acts on

SY/∼Y by ϕ · [π]Y = [ϕ ∗ π]Y . It follows that the number orbits in SY/∼Y
under this action is an upper bound for the number of permutation SDS

maps [FY , π] up to dynamical equivalence, for a fixed choice of FY . We

denote this quantity by ᾱ(Y). For each ϕ ∈ Aut(Y), let 〈ϕ〉 \ Y denote

the orbit graph of the cyclic group G = 〈ϕ〉 and Y : the vertices are the

orbits of the action of 〈ϕ〉 on v[Y], and edges are respected. An application

of Burnside’s Lemma, and a careful analysis of the fixed point sets of the

18

action, yields

(2.9) ᾱ(Y) =
1

|Aut(Y)|
∑

ϕ∈Aut(Y)

|Fix(ϕ)| = 1

|Aut(Y)|
∑

ϕ∈Aut(Y)

α(〈ϕ〉 \ Y) .

The details of this can be found in [7, 8]. The bound ᾱ is known to be sharp

for certain graph classes [8], but the sharpness question in the general case is

still an open problem. It is conjectured that as with functional equivalence,

SDS maps with FY = NorY achieve this upper bound.

3. Cycle Equivalence and Coxeter Theory

The weakest form of equivalence that we shall discuss is cycle equivalence.

While functional and dynamical equivalence have been studied in the con-

text of SDSs, cycle equivalence has not. The concept appeared in a paper

on finite dynamical systems, under the name of stable isomorphism [25],

but it was not in the setting of SDSs, and was only briefly discussed. In

this section, we show how cyclic shifts and reflections of the update order

give rise to cycle equivalent SDS maps, and we provide a connection to the

theory of Coxeter groups. The neutral networks that we construct for cycle

equivalence also encode conjugacy classes of Coxeter elements, and the main

theorem is an enumeration of them via a recurrence relation, strengthening

a result about conjugacy of Coxeter elements from [37]. We then interpret

these results in the setting of dynamics of SDSs, as well as provide a connec-

tion to other areas of mathematics where this recurrence arises, including

graph polynomials, node-firing games, and quiver representations.

3.1. Shifts and reflections of update orders.

19

Definition 3.1 (Cycle equivalence). Two dynamical systems φ : Kn
1 → Kn

1

and ψ : Km
2 → Km

2 are cycle equivalent if there exists a bijection between

their respective sets of periodic points h : Per(φ)→ Per(ψ) such that

(3.1) ψ|Per(ψ) ◦ h = h ◦ φ|Per(φ) .

By restriction it is clear that cycle equivalence is a strictly weaker con-

dition than both functional and dynamical equivalence. Let σ, ρ ∈ Sm be

defined by

σ = (m,m− 1, . . . , 2, 1) , ρ = (1, m)(2, m− 1) · · · (⌈m
2
⌉, ⌊m

2
⌋+ 1) ,

and let Cm and Dm be the cyclic and dihedral groups

(3.2) Cm = 〈σ〉 and Dm = 〈σ, ρ〉 .

Both Cm and Dm act on the set of length-m words Wm by ω = (ω1, . . . , ωm)

via the action in (1.3). Define σs(ω) = σs · ω and ρ(ω) = ρ · ω =

(ωm, ωm−1, . . . , ω2, ω1), so in particular, σ1(ω) = σ · ω = (ω2, . . . , ωm, ω1), a

cyclic shift of ω. The motivation for defining these actions is apparent by

the following theorem.

Theorem 3.2. For any ω ∈WY , the SDS maps [FY , ω] and [FY ,σs(ω)] are

cycle equivalent.

20

Proof. Set Pk = Per[FY ,σk(ω)]. By the definition of an SDS map, the

following diagram commutes

(3.3) Pk−1

[FY ,σk−1(ω)]
//

Fω(k)

��

Pk−1

Fω(k)

��

Pk
[FY ,σk(ω)]

// Pk

for all 1 ≤ k ≤ m = |ω|. Thus we obtain the inclusion Fω(k)(Pk−1) ⊂ Pk,

and since the restriction map Fω(k) : Pk−1 −→ Pk is an injection, it follows

that |Pk−1| ≤ |Pk|. We therefore obtain the sequence of inequalities

∣

∣Per[FY , ω]
∣

∣ ≤
∣

∣Per[FY ,σ1(ω)]
∣

∣ ≤ · · · ≤
∣

∣Per[FY ,σm−1(ω)]
∣

∣ ≤
∣

∣Per[FY , ω]
∣

∣ ,

from which it follows that all inequalities are, in fact, equalities. Since the

graph and state space are finite all the restriction maps Fω(k) in (3.3) are

bijections and the theorem follows. 2

Theorem 3.2 shows that the action of the cyclic group Cm on an SDS

update order preserves the cycle structure of the phase space. In the case

of K = F2, we may act on the update order by Dm. This stems from the

following result from [29].

Proposition 3.3. Let (Y,FY , ω) be an SDS over F2 with periodic points

P ⊂ Fn2 . Then

(3.4)
(

[FY , ω]
∣

∣

P

)−1
= [FY ,ρ(ω)]

∣

∣

P
.

21

This follows from the fact that for each vertex, the vertex function fi

when restricted to the ith coordinate of the set of periodic points, is a

bijection for each choice of states of vertices in N1,Y (i). There are only two

such restricted maps: the identity map yi 7→ yi and the map yi 7→ 1 + yi.

Thus composing the two maps in (3.4) in either order gives the identity

map. The corollary below is now clear:

Corollary 3.4. Over K = F2 the SDS maps [FY , ω] and [FY ,ρ(ω)] are

cycle equivalent.

We know that for any g ∈ G = Cm the SDS maps [FY , ω] and [FY , g·ω] are

cycle equivalent, where |ω| = m, and by Corollary 3.4, the same statement

holds for G = Dm if K = F2. We now have the following situation: elements

π and π′ with [π]Y 6= [π′]Y generally give rise to functionally non-equivalent

SDS maps. However, if there exists g ∈ G, π̄ ∈ [π]Y and π̄′ ∈ [π′]Y such

that g · π̄ = π̄′, then the classes [π]Y and [π′]Y give rise to cycle equivalent

SDS maps.

3.2. Neutral networks for cycle equivalence. In this section, we define

two graphs over SY/∼Y whose connected components give rise to cycle

equivalent SDS maps for a fixed sequence of functions FY . For ease of

notation we will consider permutation SDSs, but it is not difficult to see

how to extend this to systems with general word update orders. Since

cycle equivalence is a coarsening of functional equivalence, it is natural to

construct these graphs using SY/∼Y rather than SY as the vertex set. Let

22

C(Y) and D(Y) be the undirected graphs defined by

v[C(Y)] = SY/∼Y , e[C(Y)] =
{

{[π]Y , [σ1(π)]Y } | π ∈ SY
}

,

v[D(Y)] = SY/∼Y , e[D(Y)] =
{

{[π]Y , [ρ(π)]Y } | π ∈ SY
}

∪ e[C(Y)] .

Define κ(Y) and δ(Y) to be the number of connected components of C(Y)

and D(Y), respectively. By construction, C(Y) is a subgraph of D(Y) and

δ(Y) ≤ κ(Y). From Theorem 3.2 it is clear that κ(Y) is an upper bound for

the number of different SDS cycle equivalence classes obtainable through

all possible choice of simple update order. For K = F2 it follows from

Proposition 3.3 that δ(Y) is an upper bound as well. It is straightforward

to extend the definitions of C(Y) and D(Y) to the infinite graphs Ĉ(Y)

and D̂(Y) for the case of general word update orders from WY , but we will

stick with the case of simple update orders here.

Example 3.5. The update graph U(Circ4) is shown in Figure 2.1. The

graphs C(Circ4) and D(Circ4) are displayed here in Figure 3.1 where the

dashed lines are edges that belong to D(Circ4) but not to C(Circ4). The

1243

23411234

4321 1432

3412

21433214

4123

24131324

2314

4132

3241

Figure 3.1. The graphs C(Circ4) and D(Circ4). The dashed
lines are edges in D(Circ4) but not in C(Circ4).

23

vertices in Figure 3.1 are labeled by a permutation in the corresponding

equivalence class in SY/∼Y . The vertices of the cube-shaped component are

all singletons in SY/∼Y (see Figure 2.1). The equivalence classes [1324]Circ4

and [2413]Circ4 both consist of four permutations, while the remaining four

vertices on that component are equivalence classes with two permutations

each. Clearly, κ(Circ4) = 3 and δ(Circ4) = 2.

Example 3.6. Let Y be the complete bipartite graph K2,3, where the par-

tition of the vertex set is {{1, 3, 5}, {2, 4}}. The graph U(K2,3) is shown in

Figure 3.2 with vertex labels omitted. By simply counting the components

we see that α(K2,3) = 46. We can better understand the component struc-

Figure 3.2. The update graph U(K2,3).

ture of U(K2,3) by mapping permutations as (πi)i
φ7→ (πi mod 2)i. Non-

adjacency in Y coincides with parity, that is, if π ∼Y σ, then φ(π) = φ(σ).

Through the map φ we see that the 12 singleton points in U(K2,3) are

precisely those with image 10101. Each of the 24 size-two components

correspond to a pair of permutations with φ-image of the form 01011,

11010, 01101, or 10110. The six square-components arise from the per-

mutations with φ-image 10011 and 11001. Finally, the permutations in the

24

two hexagon-components are of the form 01110, and those in the two largest

components have φ-image of the form 11100 or 00111.

The graphs C(K2,3) and D(K2,3) are shown in Figure 3.3. The dashed

lines are edges that belong to D(K2,3) but not to C(K2,3). The vertices in

45123 3451251234

15432 2154332154

14325

54321

52341

12345

43215

23451

15243

13245

35241

12435

32415

52413

41352

13524 24135

21354

×1 ×3

Figure 3.3. The graph C(K2,3) contains the component on
the left, and three isomorphic copies of the structure on the
right (but with different vertex labels). The dashed lines are
edges in D(K2,3) but not in C(K2,3).

Figure 3.3 are labeled by a permutation in the corresponding equivalence

class in SY/∼Y . There are three isomorphic copies of the component on

the right, but only one is shown. Each of these three components contains

permutations whose φ-image is in {01101, 11010, 10101, 01011, 10110}. The

component on the left contains all of the remaining permutations, i.e., all π

for which φ(π) ∈ {11100, 11001, 10011, 00111, 01110}. Clearly, κ(K2,3) = 7

and δ(K2,3) = 4.

3.3. Source-to-sink operations. In this section, we show how the com-

ponent structure of C(Y) is precisely captured by a certain source-to-sink

operation on the acyclic orientations of Y . This also arises in the setting

25

of conjugacy classes of Coxeter elements, and we will briefly introduce the

basic concepts to demonstrate this connection.

The bijection in (2.1) identifies [π]Y with the acyclic orientation Oπ
Y .

Take π ∈ [π′]Y . It is clear that mapping π to σ1(π) corresponds precisely

to converting the vertex π1 from a source to a sink in Oπ
Y , which we call a

source-to-sink operation, as in [37], or a click. Two orientations OY , O
′
Y ∈

Acyc(Y) where OY can be transformed into O′
Y by a sequence of clicks are

said to click-related, and we write this as c(OY) = O′
Y where c = c1c2 · · · ck

and ci ∈ v[Y]. By this observation and with Theorem 3.2, update orders

belonging to equivalence classes whose corresponding acyclic orientations

are click-related give rise to cycle equivalent SDS maps. It is elementary to

verify that the click relation is an equivalence relation on Acyc(Y), and we

denote it by ∼κ.

The edges in C(Y) correspond with single source-to-sink operations, and

thus the number of equivalence classes of Acyc(Y) under the source-to-sink

relation is simply κ(Y), the number of connected components of C(Y).

Update orders from ∼Y classes belonging to the same component in C(Y)

are said to be κ-equivalent, as are the corresponding acyclic orientations.

For two κ-equivalent orders π and π′ there is a sequence of adjacent non-

edge transpositions and cyclic shifts that map π to π′. This is simply a

consequence of the definition of SY/∼Y and C(Y). From here there is a close

connection to the enumeration of conjugacy classes of Coxeter elements, as

will be explained in the next section.

26

3.4. Coxeter groups and Coxeter elements. A Coxeter group is a

group with presentation

〈s1, . . . , sn | (sisj)mij〉

where mij = 1 if i = j and mij ≥ 2 otherwise. The generators are involu-

tions, and so a Coxeter group is in a sense a generalized reflection group.

Given a Coxeter group, the matrix M = (mij) is the Coxeter matrix, and

the graph with vertex set {s1, . . . , sn} and edge set {{si, sj} | mij ≥ 3} with

edges labels mij is the Coxeter graph. Disregarding the edge labels we see

that there is a close connection between generators of a Coxeter group, and

the Coxeter graph on the one hand, and the Y -local functions, and SDS

base graph Y on the other hand. For example, generators si and sj for

which {si, sj} is not an edge commute, and in the same way, Y -local maps

Fi and Fj commute if {i, j} is not an edge in Y .

A Coxeter element [36] is a product of the generators in some order, i.e.,

(3.5)

n
∏

i=1

sπ(i) = sπ(1)sπ(2) · · · · · sπ(n) ,

and thus there is a correspondence between the set of Coxeter elements

and the set of permutation SDS maps over the Coxeter graph for a fixed

sequence of vertex functions. Explicitly, for a fixed sequence of functions

FY , there is a surjection from the set of Coxeter elements of the group with

Coxeter graph Y , to the set of permutation SDS maps, defined by

sπ(1)sπ(2) · · · · · sπ(n) 7−→ [FY , π] .

27

In general, this map need not be injective, and taking FY to be the sequence

of identity functions is a simple example of this. However, Proposition 2.2

implies that that it is a bijection for the NorY local functions. In light of

the correspondence between Coxeter elements, components of U(Y), and

permutation SDS maps, it is not surprising that there is also a bijection

between the set of Coxeter elements of a Coxeter group and the set of

acyclic orientations of the Coxeter graph [20]. If we conjugate a Coxeter

element
∏

sπ(i) by sπ(1) we get

(3.6) sπ(1)(sπ(1)sπ(2) · · · sπ(n))sπ(1) = sπ(2) · · · sπ(n)sπ(1) ,

and thus
∏

sπ(i) and
∏

sσk(π(i)) are conjugate for all k ∈ Z. It is not known

whether conjugation by “source generators” (or cyclically shifting) is gen-

erally sufficient to fully characterize conjugacy classes of Coxeter elements.

However, it does hold for special cases [37], and the general case is believed

to be true as well [14].

3.5. The case K = F2. For SDSs over K = F2, there is an additional

operation on acyclic orientations that leads to cycle equivalent SDS maps.

By Proposition 3.3 we may in this case also consider the group Dn and the

associated graph D(Y). Through the bijection in (2.1), this additionally

identifies Oπ
Y with the reverse orientation O

ρ(π)
Y , the unique orientation that

satisfies Oπ
Y ({i, j}) 6= O

ρ(π)
Y ({i, j}) for every {i, j} ∈ e[Y]. Two permuta-

tions belonging to ∼Y classes on the same connected component in D(Y)

are called δ-equivalent, as are their corresponding acyclic orientations. For

δ-equivalence of acyclic orientations we extend the notion of a click sequence

28

to include an element encoding reversal of all orientations. Such a sequence

is called an extended click sequence. This relation, being a consequence of

K = F2, does not seem to play any role in Coxeter theory. It would corre-

spond to identifying two conjugacy classes if for some Coxeter element g,

one contains g and the other contains g−1, and this is not a natural group

theoretic construction.

The following result gives insight into the component structure of the

graph C(Y).

Proposition 3.7. Let Y be a connected graph on n vertices and let g, h ∈

Cn with g 6= h. Then [g · π]Y 6= [h · π]Y .

Proof. Assume g 6= n with [g · π]Y = [h · π]Y . By construction, we have

g · π = σs(π) and h · π = σs′(π). Without loss of generality we may

assume s′ < s. Let V ′ ⊂ V = v[Y] be the initial subsequence of vertices

in σs′(π) that occurs at the end in σs(π). If any of the vertices in V ′

were adjacent to any of the vertices in V \ V ′ in Y it would imply that

[σs(π)]Y 6= [σs′(π)]Y . The only possibility is that Y is not connected, but

this contradicts the assumptions of the proposition. 2

The result in Proposition 3.7 additionally holds for Dn as long as Y is

not bipartite.

Proposition 3.8. Let Y be a connected graph on n vertices and let g, h ∈
Dn with g 6= h. If [g · π]Y = [h · π]Y holds then Y must be bipartite.

Proof. From [g ·π]Y = [h·π]Y it follows from Proposition 3.7 that g and h lie

in different cosets of Cn in Dn. Without loss of generality we may assume

29

that g = σs and h = ρσs
′

. Let m = |s′− s| and m′ = n−m. If s′ > s (resp.

s′ < s) the first (resp. last) m elements of g · π and h · π are the same but

occur in reverse order. Call the set of these elements V1. The remaining

m′ elements occur in reverse order as well in the two permutations. Let V2

denote the set of these elements. For [g ·π]Y = [h ·π]Y to hold, there cannot

be an edge between any two vertices in V1, or between any two vertices in

V2. Therefore, the graph Y must be a subgraph of K(V1, V2), the complete

bipartite graph with vertex sets V1 and V2. 2 2

Remark 3.9. The pairs (σs, ρσs
′

) and (σs
′

, ρσs) determine the same bipartite

graph in the proof above, with the only difference being that V1 and V2

switch roles. Moreover, if Y is bipartite, then the equality [π] = [ρ(π)] ∈
SY /∼δ can only hold for one such class [π]Y ∈ SY /∼κ, namely the class

that contains the ordering π where the vertices V1 appear consecutively, as

the initial or terminal subword of π.

From Propositions 3.7 and 3.8, we can derive upper bounds on κ(Y) and

δ(Y), and thus on the number of SDS maps up to cycle equivalence.

Corollary 3.10. If Y is a connected undirected graph on n vertices, then

κ(Y) ≤ 1
n
α(Y). Moreover, if Y is not bipartite, then δ(Y) ≤ 1

2n
α(Y).

Proof. By Proposition 3.7, for any π ∈ SY , the set {Oσ1(π)
Y , . . . , O

σn(π)
Y }

contains n distinct acyclic orientations that are all κ-equivalent. The first

statement now follows. By Proposition 3.8, if Y is not bipartite, then for

any π ∈ SY , the set {Oσ1(π)
Y , . . . , O

σn(π)
Y } ∪ {Oρσ1(π)

Y , . . . , O
ρσn(π)
Y } contains

30

2n distinct acyclic orientations that are all δ-equivalent. This establishes

the second statement. 2

3.6. Analysis of κ(Y) and δ(Y). In this section we analyze the functions

κ(Y) and δ(Y) that count the number of components of C(Y) and D(Y),

respectively. We first show that δ(Y) is determined by κ(Y).

Lemma 3.11. The map ρ : SY −→ SY extends to an involution

(3.7) ρ
∗ : Acyc(Y)/∼κ−→ Acyc(Y)/∼κ .

Proof. Let π ∈ SY , and let Oπ
Y be the corresponding acyclic orientation. It

is elementary to verify that the diagram

(3.8) π
ι

//

ρ

��

Oπ
Y

ρ̂

��

ι∼κ
// [Oπ

Y]

ρ
∗

��

ρ(π)
ι

// O
ρ(π)
Y

ι∼κ
// [O

ρ(π)
Y]

commutes, and the lemma follows. 2

Because ρ
∗ is an involution, it follows immediately that δ(Y) = 1

2
κ(Y) if

and only if ρ
∗ has no fixed points. The next result shows that this happens

precisely when Y contains an odd cycle.

Proposition 3.12. Let Y be a connected undirected graph. If Y is not

bipartite then δ(Y) = 1
2
κ(Y). If Y is bipartite then δ(Y) = 1

2
(κ(Y) + 1).

Proof. By Proposition 3.8, if Y is not bipartite, then ρ
∗ has no fixed points.

This, with the fact that ρ
∗ is an involution, establishes the first statement.

31

The second statement holds because by Remark 3.9, if Y is connected and

bipartite, ρ
∗ has precisely one fixed point. 2

Worded differently, Proposition 3.12 says that δ(Y) = ⌈κ(Y)/2⌉. More-

over, it implies the following corollary.

Corollary 3.13. A connected graph Y is bipartite if and only if κ(Y) is

odd.

For examples where ρ
∗ has a fixed point see Figure 3.1 in Example 3.5

and Figure 3.3 in Example 3.6. Now that we know how to compute δ(Y)

given Y and κ(Y), we shift our attention to computing κ(Y). The quantity

κ(Y) is multiplicative in the following sense:

Proposition 3.14. Let Y be the disjoint union of undirected graphs Y1 and

Y2. Then

κ(Y) = κ(Y1)κ(Y2) .

Proof. Every element of Acyc(Y)/∼κ can be represented by a unique pair

of elements in Acyc(Y1)/∼κ and Acyc(Y2)/∼κ, and conversely. 2

In light of this result we may assume that Y is connected when computing

κ(Y). It is easy to extend Proposition 3.14 to the case when Y1 and Y2 are

connected by a single edge.

Definition 3.15 (Bridges and cycle-edges). An edge e of a graph Y is a

bridge if removing e increases the number of components of Y . Otherwise,

it is a cycle-edge. We note that bridges are precisely the edges that are not

contained in a cycle. The subgraph of Y obtained by removing all bridges

is denoted by Cycle(Y).

32

The next result shows that bridges do not contribute to κ(Y).

Proposition 3.16. Let Y be a connected undirected graph, and e ∈ e[Y] a

bridge. Denote the two components of the graph with e removed by Y1 and

Y2. Then

κ(Y) = κ(Y1)κ(Y2) .

Proof. There is a 2–1 correspondence of acyclic orientations of Y , and

acyclic orientations of Y1 ∪ Y2, by the restriction map. We will show that if

OY and O′
Y differ only on the edge e = {v1, v2} then OY ∼κ O′

Y . The result

will then follow from Proposition 3.14. Without loss of generality, assume

that e is oriented (v1, v2). Any click sequence containing every vertex in

Y1 precisely once, and no vertices of Y2, carries OY to O′
Y , and the result

follows. 2

Proposition 3.14 together with Proposition 3.16 implies that κ(Y) is pre-

served under removal of a bridge edge. By iterating this we get the following

result.

Corollary 3.17. If Z = Cycle(Y), then κ(Y) = κ(Z) and δ(Y) = δ(Z).

Proof. The first equality follows from a simple induction argument, with

Proposition 3.16. The second equality holds because

δ(Y) = ⌈κ(Y)/2⌉ = ⌈κ(Z)/2⌉ = δ(Z) .

2

We remark that a special case of the first equality in Corollary 3.17, when

Cycle(Y) = Circn, appeared in [37]. We also immediately get the following:

33

Corollary 3.18. If Y is forest, then κ(Y) = δ(Y) = 1.

Proof. If Y is forest, then Cycle(Y) = En, the empty graph on n vertices.

Since κ(En) = 1 the result now follows from Corollary 3.17. 2

A special case of this result in Coxeter theory says that all Coxeter ele-

ments of a finite Coxeter group are conjugate [20]. This holds because the

Coxeter graph of a finite Coxeter group is always a tree. In the setting of

SDSs, κ- and δ-equivalent update orders give rise to cycle equivalent maps.

Thus we can make the following statement about SDS maps where the base

graph is a forest.

Proposition 3.19. Let Y be a forest and FY be a sequence of Y -local

functions, and ω ∈ WY . For any word ω with |ω| = m, and g ∈ Sm, the

SDS maps [FY , ω] and [FY , g · ω] are cycle equivalent.

In other words, when Y is a forest, the cycle structure is unchanged under

permutations of the update order. This result may not be that significant

if there are only a few periodic points. However, for other functions, such

as invertible ones, it is very powerful.

Corollary 3.20. Let Y be a forest, and FY = (Fi)i∈v[Y] any sequence of

Y -local functions such that each Fi is invertible. Then for any ω ∈ WY

with |ω| = m, and g ∈ Sm, the phase spaces Γ[FY , ω] and Γ[FY , g · ω] are

isomorphic.

The parity functions park : Fk2 −→ F2 are defined as park(y) =
∑

i yi,

modulo 2, and their negations, park : Fk2 −→ F2, defined be park(y) =
∑

i 1+

34

yi, modulo 2, are examples of vertex functions whose corresponding Y -

local functions are invertible for any graph Y . It should be noted that the

converse of Corollary 3.18 holds as well. This is due to the fact that κ(Y)

satisfies the same recurrence as α(Y) in (2.2), with the added condition

that e must be a cycle-edge. We will formally state and prove this in the

following section, but first, we need to develop a better understanding of

the structure of the κ-equivalence classes of a graph.

3.7. Poset structure of κ-equivalence classes. In this section, we will

show how one may associate a poset to the κ-equivalence classes of a graph.

The properties of this poset give us better insight into the structure of

Acyc(Y)/∼κ. Additionally, it allows us to construct a recurrence for κ(Y)

under deletion and contraction of cycle-edges.

Throughout, we will let e = {v, w} be a fixed cycle-edge of the connected

graph Y , and for ease of notation we set Y ′ = Y ′
e and Y ′′ = Y ′′

e . For

OY ∈ Acyc(Y) we let OY ′ and OY ′′ denote the induced orientations of Y ′

and Y ′′. Notice that OY ′ is always acyclic, while OY ′′ is acyclic if and only

if there is no directed path with endpoints v and w in OY ′ . Finally, we let

[OY] denote the κ-equivalence class containing OY .

The interval [a, b] of a poset P (where a ≤ b) is the subposet consisting

of all c ∈ P such that a ≤ c ≤ b. Viewing a finite poset P as a directed

graph DP , the interval [a, b] contains precisely the vertices that lie on a

directed path from a to b, and thus is a vertex-induced subgraph of DP .

By assumption, Y contains the edge {v, w}, so for all OY ∈ Acyc(Y) either

35

v ≤OY
w or w ≤OY

v. In this section, we will study the interval [v, w] in the

poset OY (when v ≤OY
w) and its behavior under clicks.

Definition 3.21 (vw-interval). Let Acyc≤(Y) be the set of acyclic orienta-

tions of vertex-induced subgraphs of Y . We define the map

I : Acyc(Y) −→ Acyc≤(Y) ,

by I(OY) = [v, w] if v ≤OY
w, and by I(OY) = ∅ (the null graph) otherwise.

When I(OY) 6= ∅ we refer to I(OY) as the vw-interval of OY .

Elements of Acyc≤(Y) can be thought of as subposets of Acyc(Y). Through

a slight abuse of notation, we will at times refer to I(OY) as a poset, a di-

rected graph, or a subset of v[OY]. In this last case, it is understood that

the relations are inherited from OY .

For an undirected path P = v1, v2, . . . , vk in Y , we define the function

νP : Acyc(Y) −→ Z ,

where νP (OY) is the number of edges oriented as (vi, vi+1) in OY , minus

the number of edges oriented as (vi+1, vi). It is clear that if P is a cycle,

then νP is preserved under clicks, and in this case, νP extends to a map

ν∗P : Acyc(Y)/∼κ−→ Z.

We will now prove a series of structural results about the vw-interval.

Since {v, w} ∈ e[Y], every κ-class contains at least one orientation OY

with v ≤OY
w, and thus there is at least one element OY in each κ-class

with I(OY) 6= ∅. The next results shows how we can extend the notion of

vw-interval from over Acyc(Y) to Acyc(Y)/∼κ.

36

Proposition 3.22. The map I can be extended to a map

I∗ : Acyc(Y)/∼κ−→ Acyc≤(Y) by I∗([OY]) = I(O1
Y) ,

where O1
Y is any element of [OY] for which I(O1

Y) 6= ∅.

Proof. It suffices to prove that I∗ is well-defined. Consider O1
Y ∼κ O2

Y with

v ≤Oi
Y
w for i = 1, 2. To show that I(O1

Y) = I(O2
Y) let a be a vertex in

I(O1
Y). Then a lies on a directed path P ′ from v to w in O1

Y , say of length

k ≥ 2. Let P be the cycle formed by adding vertex v to the end of P ′.

Clearly νP (O1
Y) = k − 1 since O1

Y (e) = (v, w).

By assumption, O2
Y ∈ [O1

Y] with v ≤O2
Y
w. Since νP is constant on [O1

Y]

it follows from νP (O1
Y) = k − 1 = νP (O2

Y) that every edge of P ′ is oriented

identically in O1
Y and O2

Y , and hence that every directed path P ′ in O1
Y

is contained in O2
Y as well. The reverse inclusion follows by an identical

argument. 2

In light of Proposition 3.22, we define the vw-interval of a κ-class [OY]

to be I∗([OY]). The vw-interval will be central in understanding properties

of click-sequences. First, we will make a simple observation without proof,

which also appears in [39] in the context of admissible sequences in Coxeter

theory.

Proposition 3.23. Let OY ∈ Acyc(Y), let c = c1c2 · · · cm be an associated

click-sequence, and consider any directed edge (v1, v2) in OY . Then the

occurrences of v1 and v2 in c alternate, with v1 appearing first.

37

Because {v, w} ∈ e[Y], we can say more about the vertices in I(OY) that

appear between successive instances in v and w in a click-sequence.

Proposition 3.24. Let OY ∈ Acyc(Y), and let c = c1c2 · · · cm be an asso-

ciated click-sequence that contain every vertex of I(OY) at least once and

with c1 = v. Then every vertex of I(OY) appears in c before any vertex in

I(OY) appears twice.

Proof. The proof is by contradiction. Assume the statement is false, and

let a ∈ I(OY) be the first vertex whose second instance in c occurs before

the first instance of some other vertex z ∈ I(OY). If a 6= v, then a is not a

source in OY , and there exists a directed edge (a′, a). By Proposition 3.23,

a′ must appear in c before the first instance of a, but also between the two

first instances of a. This is impossible, because a was chosen to be the first

vertex appearing twice in c. That only leaves a = v, and v must appear

twice before the first instance of w. However, this contradicts the statement

of Proposition 3.23 because {v, w} ∈ e[Y]. 2

The next result shows that for any click-sequence c that contains every

element in I(OY) precisely once, we may assume without loss of generality

that the vertices in I(OY) appear consecutively.

Proposition 3.25. Let OY ∈ Acyc(Y) be an acyclic orientation with v ≤OY

w. If c = c1c2 · · · cm is an associated click-sequence containing precisely one

instance of w, and no subsequent instances of vertices from I(OY), then

there exists a click-sequence c′ = c′1c
′
2 · · · c′m such that (i) there exists an

interval [p, q] of N with c′j ∈ I(OY) iff p ≤ j ≤ q, and (ii) c(OY) = c′(OY).

38

Proof. We prove the proposition by constructing a desired click-sequence

c′′ from c through a series of transpositions where each intermediate click-

sequence c′ satisfies c(OY) = c′(OY). Such transpositions are said to have

property T .

Let I = I(OY), and let A be the set of vertices in Ic = v[Y]\I that lie on

a directed path in OY to a vertex in I (vertices above I), and let B be the

set of vertices that lie on a directed path in OY from a vertex in I (vertices

below I). Let C be the complement of I∪A∪B. Two vertices ci, cj ∈ A∪B
with i < j for which there is no element ck ∈ A ∪ B with i < k < j are

said to be tight. We will investigate when transpositions of tight vertices

in a click-sequence c of OY has property T , and we will see that this is

always the case if ci ∈ B and cj ∈ A. Consider the intermediate acyclic

orientation after applying successive clicks c1c2 · · · ci−1 to OY . Obviously, ci

is a source. At this point, if cj were not a source, then there would be an

adjacent vertex a ∈ A with the edge {a, cj} oriented (a, cj). For cj to be

clicked as usual (i.e., as a source), a must be clicked first, but this would

break the assumption that ci and cj are tight. Therefore, ci and cj are both

sources at this intermediate step, and so the vertices ci, ci+1, . . . , cj are an

independent set of sources, and may be permuted in any manner without

changing the image of the click sequence. Therefore, the transposition of

ci and cj in c has property T , as claimed. By iteratively transposing tight

pairs in c, we can construct a click-sequence with the property that every

vertex in A comes before every vertex in B. In light of this, we may assume

without loss of generality that c has this property.

39

The next step is to show that we can move all vertices in A before v, and

all vertices in B after w via transpositions having property T . Let a be the

first vertex in A appearing after v in the click sequence c. We claim that

the transposition moving a to the position directly preceding v has property

T . This is immediate from the observation that when v is to be clicked,

a is a source as well, by the definition of A, thus it may be clicked before

v, without preventing subsequent clicks of vertices up until the original

position of a. Therefore, we may one-by-one move the vertices in A that

are between v and w, in front of v. An analogous argument shows that

we may move the vertices in B that appear before w to a position directly

following w. In the resulting click-sequence c′, the only vertices between v

and w are either in I or C. The subgraph of the directed graph OY induced

by C is a disjoint union of weakly connected components, and none of the

vertices are adjacent to I. By definition of A and B, there cannot exist a

directed edge (c, a) or (b, c), where a ∈ A, b ∈ B, and c ∈ C. Thus for

each weakly connected component of C, the vertices in the component can

be moved within c′, preserving their relative order, to a position either (i)

directly after the vertices in A and before v, or (ii) directly after w and

before the vertices of B. Call this resulting click-sequence c′′. As we just

argued, all the transpositions occurring in the rearrangement c 7→ c′′ has

property T , and c′′ contains all of the vertices in I in consecutive order,

and this proves the result. 2

40

We remark that the last two results together imply that for the interval

[p, q] in the statement of Proposition 3.25, cp = v, cq = w, and the se-

quence cpcp+1 · · · cq contains every vertex in I(OY) precisely once. A simple

induction argument implies the following.

Corollary 3.26. Suppose that OY ∈ Acyc(Y) with v ≤OY
w, and let c =

c1c2 · · · cm be a click-sequence where w appears k times. Then there exists

a click-sequence c′ = c′1c
′
2 · · · c′m such that (i) there are k disjoint intervals

[pi, qi] of N such that cj ∈ I(OY) iff pi ≤ j ≤ qi for some i, and (ii)

c(OY) = c′(OY).

Proof. The argument is by induction on k. When k = 1, the statement is

simply Proposition 3.25. Suppose the statement holds for all k ≤ N , for

some N ∈ N, and let c be a click-sequence containing N + 1 instances of w.

Let cℓ be the second instance of v in c, and consider the two click-sequences

ci := c1c2 · · · cℓ−1 and cf := cℓcℓ+1 · · · cm. By Proposition 3.25, there exists

an interval [p1, q1] with p1 < q1 < ℓ, and by the induction hypothesis, there

exists k intervals [p2, q2], . . . , [pk+1, qk+1] with ℓ ≤ p2 < q2 < · · · < pk+1 <

qk+1 such that if cj ∈ I(OY), then pi ≤ j ≤ qi for some i = 1, . . . , k + 1. 2

Let ε : Acyc(Y) −→ Acyc(Y ′) be the restriction map that sends OY to

OY ′ . Clearly, this map extends to a map ε∗ : Acyc(Y)/∼κ−→ Acyc(Y ′)/∼κ.

Define

I∗e : Acyc(Y ′)/∼κ−→ Acyc≤(Y)

by I∗e ([OY ′]) = I(O1
Y) for any O1

Y ∈ [OY] such that ε∗([OY]) = [OY ′] with

|I(O1
Y)| ≥ 3, and I∗e ([OY ′]) = {v, w} if no such acyclic orientation O1

Y

exists.

41

Proposition 3.27. The map I∗e is well-defined, and the diagram

Acyc(Y)/∼κ
I∗

//

ε∗

��

Acyc≤(Y)

Acyc(Y ′)/∼κ
I∗

e

55kkkkkkkk

commutes.

Proof. Let [OY ′] ∈ Acyc(Y ′)/∼κ. If there is at most one orientation OY ∈
Acyc(Y) such that |I(OY)| ≥ 3 and ε(OY) ∈ [OY ′], or if all orientations of

the form O1
Y in the definition of I∗e are κ-equivalent, then both statements

of the proposition are clear. Assume therefore that there are acyclic orien-

tations Oπ
Y , O

σ
Y ∈ Acyc(Y) with Oπ

Y ≁κ O
σ
Y , but η∗e([O

π
Y]) = η∗e([O

σ
Y]) and

|I(Oπ
Y)|, |I(Oσ

Y)| ≥ 3. It suffices to prove that in this case,

(3.9) I(Oπ
Y) = I(Oσ

Y) .

This is equivalent to showing that the set of vw-paths (directed paths from

v to w) in Oπ
Y ′ is the same as the set of vw-paths in Oσ

Y ′. From this it

will also follow that the diagram commutes. By assumption, both of these

orientations contain at least one vw-path. We will consider separately the

cases when these orientations share or do not share a common vw-path.

Case 1: Oπ
Y ′ and Oσ

Y ′ share no common vw-path. Let P1 be a length-k1

vw-path in Oπ
Y ′, and let P2 be a length-k2 vw-path in Oσ

Y ′ . Suppose that in

Oπ
Y ′ there are k+

2 edges along P2 oriented from v to w, and k−2 edges oriented

from w to v. Likewise, suppose that in Oσ
Y ′ there are k+

1 edges along P1

oriented from v to w, and k−1 edges oriented from w to v. If C = P1P
−1
2

42

(the cycle formed by traversing P1 followed by P2 in reverse), then

νC(Oπ
Y ′) = k+

1 + k−1 + k−2 − k+
2 , νC(Oσ

Y ′) = k+
1 − k−1 − k−2 − k+

2 .

Equating these values yields k−1 + k−2 = 0, and since these are non-negative

integers, k−1 = k−2 = 0. We conclude that P1 is a vw-path in Oσ
Y ′ and P2 is

a vw-path in Oπ
Y ′ , contradicting the assumption that Oπ

Y ′ and Oσ
Y ′ share no

common vw-paths.

Case 2: Oπ
Y ′ and Oσ

Y ′ share a common vw-path P1, say of length k1. If

these are the only vw-paths, we are done. Otherwise, assume without loss

of generality that P2 is another vw-path in Oπ
Y ′ , say of length k2. Then if

C = P1P
−1
2 , we have νC(Oπ

Y ′) = k1 − k2, and hence νC(Oσ
Y ′) = k1 − k2.

Therefore, P2 is a vw-path in Oσ
Y ′ as well. Because P2 was arbitrary, we

conclude that Oπ
Y ′ and Oσ

Y ′ share the same set of vw-paths. Since Case 1 is

impossible, we have established (3.9), and the proof is complete. 2

Let OY ∈ Acyc(Y) and assume I = I(OY) has at least two vertices.

We write YI for the graph formed from Y by contracting all vertices in I

to a single vertex denoted VI . If I only contains v and w then YI = Y ′′
e .

Moreover, OY gives rise to an orientation OYI
of YI , and this orientation is

clearly acyclic.

Proposition 3.28. Let O1
Y , O

2
Y ∈ Acyc(Y) and assume I(O1

Y) = I(O2
Y).

If O1
Y ≁κ O

2
Y then [O1

YI
] ≁κ [O2

YI
].

Proof. We prove the contrapositive statement. Set I = I(O1
Y), suppose

|I| = k, and let v1v2 · · · vk be a linear extension of I. For any click-sequence

cI between two acyclic orientations O1
YI

and O2
YI

in Acyc(YI), let c be the

43

click-sequence formed by replacing every occurrence of ci = VI in cI by the

sequence v1 · · · vk. Then c(O1
Y) = O2

Y and O1
Y ∼κ O2

Y as claimed. 2

3.8. A recurrence for κ(Y). In this section, we will utilize the results

in the previous section to establish a bijection from Acyc(Y)/∼κ to the

disjoint union
(

Acyc(Y ′
e)/∼κ ∪ Acyc(Y ′′

e)/∼κ
)

for any cycle-edge e, which

will in turn imply the following theorem:

Theorem 3.29. Let Y be an undirected graph and let e be a cycle-edge.

Then κ satisfies the recurrence relation

(3.10) κ(Y) = κ(Y ′
e) + κ(Y ′′

e) .

For a κ-class [OY], let Oπ
Y denote an orientation in [OY] such that π =

vπ2 · · ·πn and w = πi for i minimal. Define the map

(3.11) Θ: Acyc(Y)/∼κ−→
(

Acyc(Y ′)/∼κ
)

⋃

(

Acyc(Y ′′)/∼κ
)

by

(3.12) Θ: [OY] 7−→

[Oπ
Y ′′], ∃Oπ

Y ∈ [OY] with π = vwπ3 · · ·πn

[Oπ
Y ′], otherwise.

Note that [OY] is mapped into Acyc(Y ′′)/∼κ if and only if the only vertices

in I∗e ([OY]) are v and w. Since κ-equivalence over Y implies κ-equivalence

over Y ′, Θ does not depend on the choice of Oπ
Y , and is thus well-defined.

The results we have derived for the vw-interval now allow us to establish

the following:

44

Theorem 3.30. The map Θ is a bijection.

Proof. We first prove that Θ is surjective. Let I = {v, w} and consider an

element [OY ′′] ∈ Acyc(Y ′′)/∼κ with Oπ
Y ′′ ∈ [OY ′′] where π = VIπ2 · · ·πn−1.

Let π+ = vwπ2 · · ·πn−1 ∈ SY . Clearly [Oπ+

Y] ∈ Acyc(Y)/∼κ is mapped to

[OY ′′] by Θ.

Next, consider an element [OY ′] ∈ Acyc(Y ′)/∼κ. If there is no element

Oπ
Y ′ of [OY ′] such that π = vwπ3 · · ·πn, then no elements of [OY] are of

this form either, and by definition [OY ′] has a preimage under Θ. We

are left with the case where [OY ′] contains an element Oπ
Y ′ such that π =

vwπ3 · · ·πn, and we must show that there exists Oπ′

Y ′ ∈ [OY ′] such that [Oπ′

Y]

contains no element of the form Oσ
Y with σ = vwσ3 · · ·σn. Note that if

σ = vwσ3 · · ·σn, then the vertices in I(Oσ
Y) are precisely v and w. If the

orientation OY ′ had a directed path from v to w, then the corresponding

orientation OY ∈ Acyc(Y) formed by adding the edge e with orientation

(v, w) has vw-interval of size at least 3, so by Proposition 3.22, the acyclic

orientation OY cannot be κ-equivalent to any orientation Oσ
Y such that

σ = vwσ3 · · ·σn.

Thus it remains to consider the case when [OY ′] contains no acyclic ori-

entation with a directed path from v to w. Pick any simple undirected path

P ′ from v to w in Y ′, which exists because e is a cycle-edge. Choose an

orientation in [OY ′] for which νP ′ is maximal. Without loss of generality

we may assume that OY ′ is this orientation. be the orientation that agrees

with OY ′ , and with e oriented as (w, v). Since we have assumed that there

is no directed path from v to w this orientation is acyclic. We claim that for

45

any σ = vwσ3 · · ·σn one has Oσ
Y 6∈ [OY]. To see this, assume the statement

is false. Let P be the undirected cycle in Y formed by adding the edge e

to the path P ′. Because e is oriented as (v, w) in Oσ
Y and as (w, v) in OY ,

we have νP (Oσ
Y) = νP ′(Oσ

Y ′)− 1 and νP (OY) = νP ′(OY ′) + 1. If OY and Oσ
Y

were κ-equivalent, then

νP ′(Oσ
Y ′)− 1 = νP (Oσ

Y) = νP (OY) = νP ′(OY) + 1 ,

and thus νP ′(Oσ
Y ′) = νP ′(OY)+2. Any click-sequence mapping OY to Oσ

Y is

a click-sequence from OY ′ to Oσ
Y ′ . Therefore, Oσ

Y ′ ∈ [OY ′], which contradicts

the maximality of νP ′(OY ′). We therefore conclude that Oσ
Y 6∈ [OY], that

Θ([OY]) = [OY ′], and hence that Θ is surjective.

We next prove that Θ is an injection. By Proposition 3.28 (with I =

{v, w}), Θ is injective when restricted to the preimage of [OY ′′] under Θ.

Thus it suffices to show that every element in Acyc(Y ′)/∼κ has a unique

preimage under Θ. By Proposition 3.27, every preimage of [OY ′] must

have the same vw-interval I, containing k > 2 vertices. Suppose there

were preimages [Oπ
Y] 6= [Oσ

Y] of [OY ′]. By Proposition 3.28, it follows that

Oπ
YI

≁κ O
σ
YI

. We will now show that this leads to a contradiction.

Assume that c = c1 · · · cm is a click-sequence from Oπ
Y ′ to Oσ

Y ′. If one

of π or σ is not κ-equivalent to a permutation with vertices v and w in

succession, then their corresponding κ-classes would be unchanged by the

removal of edge e. In light of this, we may assume that π = vπ2 . . . πn−1w

and σ = vσ2 . . . σn−1w, and thus that c1 = v and cm = w. By Proposi-

tion 3.25, we may assume that the vertices in I appear in c in some number

of disjoint consecutive “blocks,” i.e., subsequences of the form ci · · · ci+k−1.

46

Replacing each of these blocks with VI yields a click-sequence from Oπ
YI

to Oσ
YI

, contradicting the fact that Oπ
YI

≁κ O
σ
YI

. Therefore, no such click

sequence c exists, and Θ must be an injection, and the proof is complete.

2

Clearly, Theorem 3.30 implies Theorem 3.29. It is also interesting to note

that the bijection βe : Acyc(Y) −→ Acyc(Y ′
e) ∪ Acyc(Y ′′

e) in (2.3) does not

extend to a well-defined map on κ-classes.

3.9. The Tutte polynomial. In this section we relate the problem of

computing |Acyc(Y)/∼κ | to two other enumeration problems where the

recurrence in Theorem 3.29 holds. We will show how these problems are

equivalent, and additionally, how they all can be computed through an

evaluation of the Tutte polynomial. As a corollary we obtain a transversal

of Acyc(Y)/∼κ.

In [12] the notion of cut-equivalence of acyclic orientations is studied. A

cut of a graph Y is a partition of the vertex set into two classes v[Y] =

V1 ⊔ V2, and where [V1, V2] is the set of edges between V1 and V2. A cut of

a graph Y is oriented with respect to OY ∈ Acyc(Y) if the edges of [V1, V2]

are all directed from V1 to V2, or are all directed from V2 to V1.

Definition 3.31 (Cut-equivalence). Two acyclic orientations OY and O′
Y

are cut-equivalent if the set {e ∈ e[Y] | OY (e) 6= O′
Y (e)} is (i) empty or is

(ii) an oriented cut with respect to either OY or O′
Y .

The study of cut-equivalence in [12] was done outside the setting of Cox-

eter theory and SDSs, and here we provide the connection.

47

Proposition 3.32. Two acyclic orientations of Y are κ-equivalent if and

only if they are cut-equivalent.

Proof. Suppose distinct elements OY and O′
Y in Acyc(Y) are cut-equivalent,

and without loss of generality, that all edges of [V1, V2] are oriented from V1

to V2 in OY . A click-sequence containing each vertex of V1 precisely once

maps OY to O′
Y , thus OY ∼κ O′

Y .

Conversely, suppose that OY ∼κ O′
Y , where O′

Y is obtained from OY

by a click-sequence containing a single vertex v. Then OY and O′
Y are

cut-equivalent, with the partition being {v} ⊔ v[Y] \ {v}. 2

Obviously, the recurrence relation in (3.10) holds for the enumeration of

both cut-equivalence and κ-equivalence classes.

Definition 3.33 (Tutte polynomial). The Tutte polynomial of an undi-

rected graph Y is defined recursively as follows. If Y has b bridges, ℓ loops,

and no cycle-edges, then TY (x, y) = xbyℓ. If e is a cycle-edge of Y , then

TY (x, y) = TY ′

e
(x, y) + TY ′′

e
(x, y) .

We remark that it is well-known that the number of acyclic orientations

of a graph Y is α(Y) = TY (2, 0). It was shown in [12] that the number of

cut-equivalence classes can be computed through an evaluation of the Tutte

polynomial as TY (1, 0), and thus κ(Y) = TY (1, 0). Some of the results we

proved about the structure of C(Y) and D(Y) have a natural interpretation

in the language of the Tutte polynomial. For example, Corollary 3.13 tells

us that a connected graph Y is bipartite if and only if TY (1, 0) is odd.

Corollary 3.10 implies that n · TY (1, 0) ≤ TY (2, 0).

48

It is known that TY (1, 0) counts several other quantities, some of which

can be found in [17]. One of these is |Acycv(Y)|, the number of acyclic

orientations of Y where a fixed vertex v is the unique source. As the next

result shows, there is a bijection between Acyc(Y)/∼κ and Acycv(Y).

Proposition 3.34. Let Y be a connected graph. For any fixed v ∈ v[Y],

there is a bijection

φv : Acycv(Y) −→ Acyc(Y)/∼κ .

Proof. Since κ(Y) = |Acyc(Y)/∼κ | = TY (1, 0) = |Acycv(Y)| it is sufficient

to show that there is a surjection φv : Acycv(Y)→ Acyc(Y)/∼κ.

We first prove that each A ∈ Acyc(Y)/∼κ contains at least one element

of Acycv(Y) by contradiction. Assume that A ∈ Acyc(Y)/∼κ contains no

element of Acycv(Y), and choose OY ∈ A such that v is a source. Clearly,

the assumption implies that there exists infinite length click-sequences from

OY not containing v. Let c be such a click-sequence, and let V ′ ⊂ v[Y] be

the set containing all vertices that occur infinitely often in c. Then V ′ 6= ∅,
and since v 6∈ V ′ we have v[Y] \ V ′ 6= ∅. Clearly, for such a click-sequence

c to exist there can be no edges of the form {s, t} ∈ e[Y] with s ∈ V ′ and

t ∈ v[Y] \ V ′, and we are forced to conclude that Y is not connected, a

contradiction. Hence any A ∈ Acyc(Y)/∼κ contains at least one element of

Acycv(Y).

Clearly, non-equivalent κ-classes of Y cannot have elements of Acycv(Y)

in common, and since |Acyc(Y)/∼κ | = |Acycv(Y)| we conclude that each κ-

class of Y contains a unique element of Acycv(Y). The map φv : Acycv(Y)→

49

Acyc(Y)/∼κ defined by φv(OY) = [OY] is therefore a surjection, and by the

initial comment, a bijection. 2

From Proposition 3.34 we immediately obtain:

Corollary 3.35. For any vertex v of Y the set Acycv(Y) is a transversal

of Acyc(Y)/∼κ.

In light of the results in this section, the recurrence in (3.10) may also be

proven by showing that the map φv is injective. However, our proof offers

insight into the structure of the κ-classes, and it is our hope that this may

lead to new techniques for studying conjugacy classes of Coxeter groups.

3.10. Examples. The recurrence for κ(Y), along with the fact that κ(Y) =

1 for a forest allows us to easily compute κ(Y) for some common graph

classes. First, we derive an explicit formula for graphs that are vertex joins.

Definition 3.36 (Vertex join). The vertex join of a graph Y denoted Y ⊕v,

is the graph

v[Y ⊕ v] = v[Y] ⊔ {v} , e[Y ⊕ v] = e[Y] ∪
{

{v, v′} | v′ ∈ v[Y]
}

.

In general, the recursion relation is unhelpful for computing κ(Y ⊕ v).

However, it follows easily from Corollary 3.35.

Proposition 3.37. If Y is a graph with e[Y] 6= ∅, then

(3.13) κ(Y ⊕ v) = 2δ(Y ⊕ v) = α(Y) .

Proof. If v is a source of Y ⊕ v, then it must be the unique source, and so

κ(Y ⊕ v) = α(Y) is immediate from Corollary 3.35. Since e[Y] 6= ∅, the

50

vertex join Y ⊕ v contains a cycle of length 3, is thus not bipartite, and so

by Proposition 3.12 we have 2δ(Y ⊕ v) = κ(Y ⊕ v). 2

Proposition 3.37 allows us to compute κ for the complete graph Kn and

the graph Wheeln, the vertex join of Circn.

Corollary 3.38. For n ≥ 3, κ(Kn) = (n − 1)!, δ(Kn) = (n − 1)!/2,

κ(Wheeln) = 2n − 2 and δ(Wheeln) = 2n−1 − 1.

Proof. There are 2(n
2) orientations of Kn, and by the bijection in (2.1), pre-

cisely α(Kn) of these are acyclic, and this is equal to the number of compo-

nents of the update graph U(Kn). Since U(Kn) consists of the n! singleton

vertices in SY , α(Kn) = n!. By Proposition 3.37, κ(Kn) = α(Kn−1) =

(n − 1)!. There are 2n orientations of Circn, and all but two of them are

acyclic. Therefore, κ(Wheeln) = α(Circn) = 2n − 2. The corresponding

values for δ are immediate from Proposition 3.37. 2

From the recurrence relation, the value κ(Y) for the circle graphs is im-

mediate. We note that this was done explicitly in [37].

Corollary 3.39. κ(Circn) = n− 1 and δ(Circn) = ⌈n−1
2
⌉.

3.11. Actions of Aut(Y). In the case of functional equivalence, the action

of Aut(Y) on the set SY/∼Y gives rise to the weaker notion of dynamical

equivalence. In the setting of cycle equivalence, we may identify elements of

SY /∼κ (or SY /∼δ) that contain update orders related by some ϕ ∈ Aut(Y),

as long as the functions FY are Aut(Y)-invariant. Two SDS maps arising

from these update orders will be conjugate when restricted to the periodic

51

points, i.e.,

(3.14)
(

ϕ ◦ [FY , π] ◦ ϕ−1
) ∣

∣

P
= [FY , ϕ ∗ π]

∣

∣

P
.

Even if π and ϕ ∗ π are not κ- or δ-equivalent, for any ϕ ∈ Aut(Y), the

SDS maps [FY , π] and [FY , ϕ ∗π] will be dynamically equivalent, and hence

cycle equivalent. Thus as in (2.9), counting the number of orbits under this

action gives a potentially better upper bound for the number of SDS maps

up to cycle equivalence, obtainable by varying the update order and fixing

FY . We shall denote these quantities by κ̄(Y) and δ̄(Y), respectively.

Example 3.40. Let Y = Q3
2 be the binary 3-cube, which has automor-

phism group isomorphic to S4 × C2. It is shown in [7] that α(Q3
2) = 1862

and that ᾱ(Q3
2) = 54. Thus, there are at most 1862 functionally nonequiv-

alent permutation SDSs over Q3
2 for a fixed sequence of vertex functions.

Likewise, there are at most 54 dynamically nonequivalent Aut(Q3
2)-invariant

permutation SDSs. It is known that the bound ᾱ(Q3
2) is sharp, since it is

realized for SDSs induced by, e.g. the nor4-function.

The number of cycle equivalence classes is bounded above by κ(Q3
2), and

from the recurrence relation we get (with some foresight at each step)

κ() = κ() + κ() = κ() + 2κ() + κ()

= κ() + 2κ() + 2κ() + κ() + κ()

= κ() + 4κ() + 2κ() + κ() + κ()

= 27 + 64 + 16 + 12 + 14 = 133 ,

52

Since Q3
2 is bipartite we also derive δ(Q3

2) = (133 + 1)/2 = 67, and thus in

the case of K = F2 there are at most 67 cycle classes for a fixed sequence

of vertex functions. Straightforward (but somewhat lengthy) calculations

show that κ̄(Q3
2) = δ̄(Q3

2) = 8. In conclusion, we have:

α(Q3
2) = 1862 , κ(Q3

2) = 133 , δ(Q3
2) = 67 ,

ᾱ(Q3
2) = 54 , κ̄(Q3

2) = 8 , δ̄(Q3
2) = 8 .

Thus if FY is a sequence of Aut(Q3
2)-invariant Y -local functions, there are

at most eight different periodic orbit configurations for permutation SDS

maps [FY , π] up to isomorphism. Moreover, because κ̄(Q3
2) = δ̄(Q3

2) taking

vertex states from K = F2 does not improve this upper bound.

This example shows how when Aut(Y) is non-trivial, the functions κ(Y)

(and δ(Y) when K = F2) are not sharp upper bounds for the number of

SDS maps up to cycle equivalence. However, it remains an open question

if κ̄(Y) and δ̄(Y) are sharp.

3.12. Connections to node-firing games and representations of quiv-

ers. Not surprisingly, acyclic orientations show up in other areas of math-

ematics, and we conclude this section by showing how the source-to-sink

operations arise in these settings.

We have seen how α(Y) counts the number of chambers of the graphic

hyperplane arrangement H(Y), so it is reasonable to expect that the source-

to-sink operation should have a natural interpretation in this setting. In

fact, the quantity TY (1, 0) is the Möbius invariant of the intersection lattice

53

of the graphic hyperplane arrangement of Y , and the κ-classes correspond

to chambers bounded by certain linear functionals (see [31]).

The chip-firing game was introduced by Björner, Lovász, and Shor [11].

It is played over an undirected graph Y , and each vertex is given some

number (possibly zero) of chips. If vertex i has degree di, and at least di

chips on it, then a legal move (or a “click”) of vertex i is a transfer of

one chip to each neighboring vertex. This is in a sense a generalization

of a source-to-sink operation, because to any acyclic orientation OY , an

assignment to each vertex the number of chips equal to its out-degree gives

a configuration where legal moves of the chip-firing game correspond to

source-to-sink operations of OY . The chip-firing game is closely related to

the numbers game [10]. In the numbers game over a graph Y , the legal

sequences of moves are in 1–1 correspondence with the reduced words of

the Coxeter group with Coxeter graph Y . For an excellent summary and

comparison of these games, see [15]. We also point out a previous study of

the Tutte polynomial in the context of the chip-firing game [26]. It is our

hope that this paper will motivate the further pursuit of the connections

between these topics, as well as closure to certain open problems in Coxeter

theory, such as the sharpness of the bound κ(Y) for the enumeration of

conjugacy classes of Coxeter elements.

A quiver is a finite directed graph (loops and multiple edges are allowed),

and appears primarily in the study of representation theory. A quiver Q

with a field K gives rise to a path algebra KQ, and there is a natural

correspondence between KQ-modules, and K-representations of Q. In fact,

there is an equivalence between the categories of quiver representations,

54

and modules over path algebras. A path algebra is finite-dimensional if

and only if the quiver is acyclic, and the modules over finite-dimensional

path algebras form a reflective subcategory. A reflection functor maps

representations of a quiver Q to representations of a quiver Q′, where Q′

differs from Q by a source-to-sink operation [27]. We note that while the

composition of n source-to-sink operations (one for each vertex) maps a

quiver back to itself, the corresponding composition of reflection functors is

not the identity, but rather a Coxeter functor. In fact, the same result in [39]

about powers of Coxeter elements being reduced was proven previously

using techniques from the representation theory of quivers [23].

4. Word-independence and dynamics groups

The central theme of this section is word-independence. A sequence of

Y -local functions is said to be word-independent if the set of periodic points

of an SDS map over the functions is independent of the update order. When

this happens, the Y -local functions generate a group called the dynamics

group. If the vertex states are from K = F2, then this group is the homo-

morphic image of a Coxeter group. The dynamics group describes how the

periodic points are permuted by the local functions. We study some general

properties of word-independent functions and dynamics groups, and then

apply these techniques to a simple class of SDSs called elementary asyn-

chronous cellular automata, or ACAs. These are defined over the circular

graph Circn, and can be thought of as elementary finite cellular automata,

where there vertex functions are updated asynchronously instead of in par-

allel. There are 256 local rules that give rise to ACAs, and we prove that

55

precisely 104 of them are word-independent for all n > 3. This is a signifi-

cant extension of a recent theorem in [18]. We then classify these 104 rules

to better understand their dynamics, and to examine the sets of periodic

points and the dynamics groups of these systems. In addition to the pure

intellectual merit of this problem, it is a good starting point for the study

of update-order stochastic SDSs. We conclude this section by outlining

directions for future research.

4.1. Word-independence.

Definition 4.1 (ω-independence). A sequence of Y -local functions FY is

called ω-independent, if Per[FY , ω] = Per[FY , ω
′] for all fair update orders

ω, ω′ ∈ WY , and is called π-independent if Per[FY , π] = Per[FY , π
′] for all

simple update orders π, π′ ∈ SY .

Every ω-independent FY is trivially π-independent. The following propo-

sition is crucial in showing that the converse holds as well.

Proposition 4.2. If FY is π-independent, and P = Per[FY , π], then each

Fi : P → P is invertible.

Proof. Suppose that FY is π-independent. Let π ∈ SY , and let σ =

(π2, π3, . . . , πn, π1). Observe that for all k ∈ N, Fπ1◦[FY , π]k = [FY , σ]k◦Fπ1 .

Choose k ∈ N large enough so that [FY , π]k(Kn) = [FY , σ]k(Kn) = P . Then

Fπ1(P) = Fπ1 ◦ [FY , π]k(Kn) = [FY , σ]k ◦ Fπ1(K
n) ⊆ P,

56

and it follows that

(4.1) Fπ1(P) ⊆ P.

Moreover, we have P = [FY , π](P) and |P | = |[FY , π](P)| ≤ |Fπ1(P)|.
Therefore, equality must hold in (4.1), and thus Fπ1 is invertible on P . 2

Remark 4.3. The proof of Proposition 4.2 did not use the fact that π was a

simple update order, and thus the same argument holds under the assump-

tion that FY is ω-independent.

In fact, it is straightforward to show that π- and ω-independence are

equivalent conditions.

Corollary 4.4. A sequence FY of Y -local functions is ω-independent if and

only if it is π-independent.

Proof. Suppose FY is π-independent. By Proposition 4.2, Per[FY , ω] ⊇

Per[FY , π] for any fair ω ∈ WY and π ∈ SY . For the reverse inclusion,

observe that by Proposition 4.2 and Remark 4.3, each Fi is a bijection on

Per[FY , ω], and thus for any y ∈ Per[FY , ω], we have [FY , π](y) ⊆ Per[FY , π].

2

In light of Corollary 4.4, we shall call ω- (or π-) independence simply

word-independence. Even though word-independence is too strong to expect

generally, there are several classes of SDS maps that have this property. It

is fairly easy to show that both invertible and fixed point systems are word-

independent.

57

Definition 4.5. A sequence of local functions FY (and a corresponding

SDS over FY) is a fixed point system if for every π ∈ SY , the SDS map

[FY , π] fixes every point in Per[FY , π].

Proposition 4.6 (Fixed point systems). Fixed point systems are word-

independent.

Proof. If y is fixed by [FY , π], then because the local functions can only

change one coordinate at a time, y must be fixed by each Fi in FY , in

which case it is a fixed point of [FY , π] for every π ∈ SY . Therefore, a

point of Kn is fixed by [FY , π] if and only if it is fixed by [FY , σ] for every

σ ∈ SY . Since by hypothesis, the only periodic points are fixed points, then

every permutation SDS map has the same set of periodic points, hence FY

is π-independent, and by Corollary 4.4, word-independent as well. 2

It is essentially immediate to show that invertible functions are word-

independent.

Proposition 4.7 (Invertible functions). If every local function Fi in FY

is a bijection, then for every update order ω ∈ WY , Per[FY , ω] = Kn, and

consequently, FY is word-independent.

Proof. Since every Fi is a bijection, so is the SDS map [FY , ω], thus Per[FY , ω]

= Kn for every ω ∈WY . 2

Sometimes, we can prove that a particular non-invertible SDS is word-

independent by showing that when restricted to its periodic point set, it

agrees with an invertible SDS. We will use this technique later when proving

58

that certain asynchronous cellular automata are word-independent. In fact,

a more general statement holds.

Theorem 4.8. Suppose that for all π ∈ SY , the periodic points of an SDS

map [FY , π] are all contained in a set M ⊆ Kn, and

[FY , π](M) = M.

Then FY is word-independent, and Per(FY) = M .

Proof. By assumption,

(4.2) Per[FY , π] ⊆M.

We will show the reverse inclusion by producing an injectionM →֒ Per[FY , π].

Since M is invariant under [FY , π], the ith iteration [FY , π]i(M) = M for

each i ∈ N. Moreover, for some N ∈ N, if i ≥ N , then

[FY , π]i(M) ⊆ Per[FY , π] .

We conclude that the mapping

[FY , π]i : M →֒ Per[FY , π]

is an injection, thus equality holds in (4.2). 2

This last theorem exemplifies the fact that word-independence is a prop-

erty of the periodic point sets as a whole rather than the cycle structure

within them. The periodic states of a word-independent SDS will typically

have different cycle configurations under different update orders, as shown

59

by the example in Figure 4.1. In the next section, we define the dynam-

1000

0010

0100

0001 1010

0000

0101

0011

1011

0111

1111

1101

(1234)

0110
1110

1001

1100

(a) Γ[NorCirc4 , 1234]

0111

1111

1101

1010

0000

0101

0010 1000

1110

1100

0110 0011

1001

1011

0001 0100(1324)

(b) Γ[NorCirc4 , 1324]

Figure 4.1. Phase spaces of an SDS with different update
orders. The cycle structure is different for the two systems,
but the sets of periodic points are the same.

ics group, which helps us better understand how the local functions of a

word-independent SDS permute the periodic points within these sets.

4.2. Dynamics and Coxeter groups. Proposition 4.2 ensures that for

any word-independent SDS, the local functions permute the set of periodic

points. Therefore, we may define the group of permutations of periodic

points for any word-independent SDS.

Definition 4.9. Let FY be word-independent, and let F ∗
i and [FY , π]∗ de-

note the maps Fi and [FY , π], restricted to P = Per(FY). If W ′ ⊆ WY is a

collection of update orders, then the group

H(FY ,W
′) = 〈[FY , ω]∗ : ω ∈W ′〉

is called the dynamics group of FY and W ′. Two special cases are of par-

ticular interest. The first, when W ′ = {i}1≤i≤n, is

(4.3) G(FY) := H(FY ,WY) = 〈F ∗
i : Fi ∈ FY 〉 ,

60

and is called the full dynamics group, or just simply the dynamics group of

FY . The second case, when W ′ = SY , is

(4.4) H(FY) := H(FY , SY) = 〈[FY , ω]∗ : ω ∈ SY 〉 ,

and is called the permutation dynamics group of FY . When it is clear from

the context what FY is, we shall denote the groups in (4.3) and (4.4) by

just G and H , respectively.

Let U, V ⊆WY , and let U∗ and V ∗ denote the respective Kleene closures

(closure under string concatenation). It is clear that if U∗ ⊆ V ∗, then

H(FY , U) ≤ H(FY , V).

Example 4.10. Consider the Y -local functions IdY = (Idi)
n
i=1 induced by

the vertex functions

id : Fk2 −→ F2 , id : (y1, . . . , yi−1, yi, yi+1, . . . , yn) 7−→ ȳi .

Clearly, the dynamics of this system is independent of update order, and

every SDS map [IdY , π] has order 2, each one being the inversion map y 7→ ȳ,

regardless of π. Therefore, H(IdY) ∼= C2 and G(IdY) ∼= Cn
2 , where C2 is the

cyclic group of order 2. (We will continue to use Ck instead of Zk for the

cyclic group of order k, to remain consistent with our notation in Section 3.)

When K = F2, there is a connection between dynamics groups and Cox-

eter groups, which can be seen readily by setting

mij = |F ∗
i ◦ F ∗

j | ,

61

that is, the order of F ∗
i ◦ F ∗

j . By Proposition 3.3, Fi ◦ Fi is the identity

function when restricted to Per(FY). Therefore, mii = 1. One difference

from the relations of a Coxeter group is that in the presentation of the

dynamics group, the relation mij = 1 is allowed for i 6= j. However, the

next proposition describes exactly when this can happen.

Proposition 4.11. When i 6= j, mij = 1 if and only if F ∗
i and F ∗

j are the

identity functions on Per(FY).

Proof. Clearly, if Fi and Fj fix all y ∈ Per(FY), then mij = 1. Conversely,

if mij = 1, then Fi ◦ Fj(y) = y. Because Fi and Fj are Y -local functions,

Fi ◦ Fj changes y by changing the jth, and then the ith coordinate. If

Fi ◦Fj(y) = y, then y is neither changed by Fi nor Fj . Since this holds for

all y ∈ Fn2 , Fi and Fj are the identity on Per(FY). 2

By Proposition 4.6, fixed point systems are word-independent. The fol-

lowing corollary shows that these are precisely the functions that have trivial

dynamics group.

Corollary 4.12. The following are equivalent:

• FY is a fixed point system.

• mij = 1 for all i and j.

• G(FY) is the trivial group.

For any Coxeter group, the matrix (mij) is called the Coxeter matrix.

We can similarly define such a matrix for a word-independent SDS and

its dynamics group. Without loss of generality, we may assume that the

vertices in Y are ordered so that for some k ≤ n, the function Fi is not

62

the identity on Per(FY) iff i ≤ k. The number k is called the rank of the

dynamics group. The trivial group (i.e., the dynamics group of a fixed point

system) is the only dynamics group with rank 0. The Coxeter matrix of FY

is the n× n matrix

(4.5) M(FY) =

C(FY) 2

2 1

in block form. Here, C(FY) is a k× k matrix, there is an (n− k)× (n− k)

block of 1s, and the remaining entries are 2s. Since mij ≥ 2 for all distinct

i, j ≤ k, C(FY) is the matrix of a Coxeter group. Hence there exists a

homomorphism from a Coxeter group onto G(FY):

〈si, . . . , sk | (sisj)mij〉 −→ G(FY) ,

defined by the mapping si 7→ Fi. A curious problem regarding the dy-

namics group stems from the observation that in general, Coxeter groups

are infinite, but the dynamics group, being a group of permutations of a

finite set, is always finite. Therefore, the dynamics group can be presented

with relations (Fi ◦ Fj)mij , and some additional relations. An interesting

research question is to determine these relations from the functions and the

underlying graph.

Later in this section, we will study asynchronous cellular automata, which

are defined over circular graphs, Circn. The local functions that arise are

not always invariant under Aut(Circn) ∼= Dn, but as we shall see, they are

invariant under the transitive subgroup Cn. As the next result shows, this

63

greatly simplifies the possibilities for the Coxeter matrix of the dynamics

group.

Proposition 4.13. Suppose FY is a word-independent sequence of func-

tions that is invariant under a transitive subgroup H ≤ Aut(Y). Then

rank(G(FY)) = n if and only if Fix(FY) 6= Per(FY).

Proof. If the rank of the dynamics group is n, then there are clearly non-

fixed points in Per(FY).

Conversely, suppose Per(FY) contains a non-fixed point y. Then for some

k, Fk is not the identity on Per(FY). Pick a vertex ℓ 6= k. Because H is

transitive, there exists some h ∈ H such that h(k) = ℓ. By Proposition 2.9,

h ◦ Fk ◦ h−1 = Fℓ. By assumption, Fk is not the identity, so neither is Fℓ.

Since ℓ was arbitrary, the result follows. 2

4.3. Asynchronous cellular automata. We will now use the tools and

ideas that we have developed about word-independent functions to better

understand a class of SDSs called elementary asynchronous cellular au-

tomata.

4.3.1. Preliminaries. Some of the simplest classical cellular automata are

the one-dimensional CAs known as elementary cellular automata, or “ECAs”.

In an elementary CA, every vertex has precisely two neighbors, the vertex

states are from F2, and all local functions are the same (i.e., Cn-invariant).

Since every vertex has two neighbors, the underlying graph is either an in-

finite line, or a circle, and its vertex functions are of the form fi : F3
2 → F2.

There are 28 = 256 such functions, known as Wolfram rules, or ECA rules,

64

and thus 256 types of elementary cellular automata. Even in such a restric-

tive situation there are many interesting properties that can be observed

about the dynamics. For the remainder of this section the underlying graph

will be Y = Circn, and thus we will refer to SY simply as Sn, and the set of

fair words in WY as Wn.

Definition 4.14 (Wolfram rules). Let Fi : Fn2 → Fn2 be a Circn-local func-

tion at i, and let fi : F3
2 → F be the corresponding vertex function. The

domain of fi is a triple of the form (yi−1, yi, yi+1). Call this a local state con-

figuration and view all subscripts modulo n. In order to completely specify

the function Fi it is sufficient to list how the ith coordinate is updated for

each of the eight possible local state configurations. More specifically, let

fi(yi−1, yi, yi+1) = zi. The vertex function fi, and the corresponding local

function Fi, henceforth both referred to as a Wolfram rule, is completely

described by the following table.

(4.6)
yi−1yiyi+1 111 110 101 100 011 010 001 000

zi a7 a6 a5 a4 a3 a2 a1 a0

The 28 = 256 possible Wolfram rules can be indexed by an 8-digit binary

number a7a6a5a4a3a2a1a0, or by its decimal equivalent k =
∑7

i=0 ai2
i. There

is thus one Wolfram rule k for each integer 0 ≤ k ≤ 255. For each such n, k

and i, let Wolf
(k)
i denote the Circn-local function Fi : Fn2 → Fn2 just defined,

let wolf
(k)
i denote the corresponding vertex function fi : F3

2 → F2, and let

Wolf(k)n denote the sequence of local functions (Wolf
(k)
1 ,Wolf

(k)
2 , . . . ,Wolf(k)n).

We say that Wolfram rule k is word-independent whenever Wolf(k)n is word-

independent for all n > 3.

65

For each update order ω there is an SDS (Circn,Wolf(k)n , ω) that can

be thought of as a classical elementary CA, but with the update functions

applied asynchronously. For this reason, such SDSs are called asynchronous

cellular automata or ACAs.

4.3.2. Main theorem. We now state our main result about word-independent

ACAs.

Theorem 4.15. There are exactly 104 word-independent Wolfram rules.

More precisely, Wolf(k)n is word-independent for all n > 3 iff k ∈ {0, 1, 4,

5, 8, 9, 12, 13, 28, 29, 32, 40, 51, 54, 57, 60, 64, 65, 68, 69, 70, 71, 72,

73, 76, 77, 78, 79, 92, 93, 94, 95, 96, 99, 102, 105, 108, 109, 110, 111,

124, 125, 126, 127, 128, 129, 132, 133, 136, 137, 140, 141, 147, 150, 152,

153, 156, 157, 160, 164, 168, 172, 184, 188, 192, 193, 194, 195, 196, 197,

198, 199, 200, 201, 202, 204, 205, 206, 207, 216, 218, 220, 221, 222, 223,

224, 226, 228, 230, 232, 234, 235, 236, 237, 238, 239, 248, 249, 250, 251,

252, 253, 254, 255}.

The result of Theorem 4.15 may seem surprising, because it says that

the set of word-independent ACAs is the same for all n. It is a significant

generalization of the main result of [18], which is that that precisely 11 of the

16 symmetric Wolfram rules are word-independent over Circn for all n > 3.

In addition to identifying a large class of word-independent ACAs, the proof

of Theorem 4.15 provides insight into the dynamics of these systems at both

periodic and transient states, and thus serves as a foundation for the future

study of their properties in a stochastic setting. We conclude this section

66

with two remarks about the role played by computer investigations of these

systems.

Remark 4.16 (Unlisted numbers). The “only if” portion of this theorem was

established experimentally. For each 4 ≤ n ≤ 9, and for each 0 ≤ k ≤ 255,

a program calculated the set Per[Wolf(k)n , π] for all π of a transversal for

SY/∼Y that was also generated by the program. The program calculated

the set of states that were periodic for some update order, as well as the set

of states that were periodic for every update order. The word-independent

rules are precisely those where these two sets are equal. For each of the 152

values of k not listed above, these sets were unequal for each n = 4, . . . , 9,

leaving the remaining 104 rules as the only candidates with the potential

to be word-independent for all n > 3. Moreover, since a counterexample

for one value of n leads to similar counterexamples for all multiples of n,

these 104 rules are also the only ones that have any possibility of being

word-independent for all sufficiently large values of n.

Remark 4.17 (Computational guidance). These early computer-aided in-

vestigations also had a major impact on the “if” portion of the proof. The

computer results helped identify patterns among the 104 rules, and by list-

ing the actual sets of periodic points, we were able to conjecture what the

sets of periodic points of certain rules were. In many cases, proving these

conjectures immediately implied that the given rule was word-independent.

4.3.3. Wolfram Rule Notations. Once we determined the 104 rules that

were word-independent, it was natural to attempt to classify them and

67

110 100

111 101 010 000

011 001

a6 a4

a7 a5 a2 a0

a3 a1

p3

p4 p1

p2

Figure 4.2. Grid notation for Wolfram rules

look for patterns about how they are are distributed among the 256 Wol-

fram rules. However, the conversion from binary to decimal obscures many

structural details, so we introduce other ways to describe the Wolfram rules

that makes their similarities and differences more immediately apparent,

and significantly reduces the number of cases in the proof of Theorem 4.15.

Definition 4.18 (Grid notation). For each binary k = a7a6a5a4a3a2a1a0

we arrange its digits in a grid. The 8 local state configurations naturally

correspond to the vertices of the binary 3-cube Q3
2. By projecting this into

the plane, we get a grid, as in the left-hand side of Figure 4.2. In place of

the local state configurations, we can place the corresponding binary digits

of k, as shown in the center of Figure 4.2. The boxes have been added

because the local state configurations come in pairs that differ only by the

middle value. The arrangement of the binary digits of k in this manner is

called the grid notation for k.

As an example, the grid notation for Wolfram rule 29 = 00011101 is shown

on the left-hand side of Figure 4.3. Because grid notation is sometimes

cumbersome to work with we also define a very concise 4-symbol tag for

each Wolfram rule.

Definition 4.19 (Tag). The grid notation of a Wolfram rule consists of

four pairs of binary digits, and there are four possibilities for each of these:

68

110 100

111 101 010 000

011 001

0 1

0 0 1 1

1 0

x

0 1

-

p3

p4 p1

p2

Figure 4.3. Converting Wolfram rule 29 = 00011101 into
its tag 0x-1.

(i) 00, (ii) 11, (iii) 01, and (iv) 10. These correspond to the image under

rule k of the middle value of a pair of local state configurations. There are

4 possibilities: (i) both are mapped to 0, (ii) both are mapped to 1, (iii)

both are changed, (iv) both are unchanged. We encode these 4 possibilities

by the symbols 0, 1, x, and -, respectively. In other words ‘0’ = 0 0 , ‘1’

= 1 1 , ‘x’ = 0 1 , and ‘-’ = 1 0 . We label the symbols for the four

boxes p1, p2, p3 and p4 as shown on the right-hand side of Figure 4.2 and

define the tag of k to be the string p4p3p2p1. The numbering and the order

of the pis has been chosen to match the binary representation as closely

as possible, with the hope of easing conversions between binary and tag

representations. The process of converting Wolfram rule 29 to its tag 0x-1

is illustrated in Figure 4.3. Observe that a rule is invertible if and only if

its tag contains no 0s and no 1s.

Definition 4.20 (Symmetric and asymmetric parts). The middle row in the

grid notation corresponds to the four symmetric local state configurations,

and the top and bottom rows correspond to the four asymmetric local state

configurations. Thus we call the middle row the symmetric portion of the

grid and the top and bottom rows the asymmetric portion. With this in

69

mind we call p4p1 the symmetric part of the tag k = p4p3p2p1 and p3p2 the

asymmetric part.

Table 1 shows the 104 word-independent Wolfram rules listed in The-

orem 4.15 arranged according to the symmetric and asymmetric parts of

their tags. The rows list all 16 possibilities for the symmetric part of the tag

while the columns list only 10 of the 16 possibilities for the asymmetric part

since only these 10 occur among the 104 rules. Observe that the symmetric

and asymmetric parts of the tag of rule k have a decimal equivalent whose

sum is k. In this format the benefits of the tag representation should be

clear. Far from being distributed haphazardly, the word-independent rules

are clustered together in large blocks. Table 1 reveals a lot of structure, but

some patterns remain slightly hidden due to the order in which the rows

and columns are listed. For example, there is a 4 × 4 block of invertible

rules obtained by restricting attention to the four rows that show up in the

last column and the four columns that show up in the last row.

Proposition 4.21 (Invertible rules). Wolfram rules 51, 54, 57, 60, 99, 102,

105, 108, 147, 150, 153, 156, 195, 198, 201 and 204 are word-independent.

Proof. These are the 16 invertible rules, because their tags contain no 0s

and 1s. They are word-independent by Proposition 4.7. 2

4.3.4. Dynamical equivalence. In this section we utilize dynamical equiva-

lence to reduce the proof of Theorem 4.15 to a more manageable size.

70

p3 - - 0 0 - 1 1 - x x

p2 - 0 - 0 1 - 1 x - x

p4p1 72 64 8 0 74 88 90 66 24 18

-- 132 204 196 140 132 206 220 222 198 156 150
0- 4 76 68 12 4 78 92 94 70 28
-0 128 200 192 136 128 202 216 218 194 152
1- 164 236 228 172 164 238 252 254 230 188
-1 133 205 197 141 133 207 221 223 199 157
10 160 232 224 168 160 234 248 250 226 184
01 5 77 69 13 5 79 93 95 71 29
00 0 72 64 8 0
x0 32 96 40 32
0x 1 73 65 9 1
-x 129 201 193 137 129 195 153 147
x- 36 108 110 124 126 102 60 54
x1 37 109 111 125 127
1x 161 235 249 251
11 165 237 239 253 255
xx 33 105 99 57 51

Table 1. The 104 word-independent Wolfram rules arranged
by the symmetric and asymmetric parts of their tags.

Proposition 4.22. If two maps φ, ψ : Kn → Kn are dynamically equiva-

lent, related by h ◦ φ = ψ ◦ h for a surjection h : Kn → Kn, then h is a

bijection between the periodic points of φ and ψ.

Proof. For each m ∈ N, the diagram

Kn
φm

//

h
��

Kn

h
��

Kn
ψm

// Kn

commutes, where φm denotes the mth iterate of φ. A state y ∈ Kn is

periodic if and only if it is in the image of φm (or equivalently, h ◦ φm)

for every m ∈ N. Because the above diagram commutes, this is equivalent

71

to y being in the image of ψm ◦ h (and hence ψm) for every m. Thus

h : Per(φ) →֒ Per(ψ), and reversing the role of φ and ψ gives the opposite

inclusion, and the result follows. 2

Corollary 4.23. If FY is word-independent, and h◦ [FY , ω]◦h−1 = [F′
Y , ω

′],

then F′
Y is word-independent as well.

There are three basic ways to turn an ACA (Y,FY , ω) into a potentially

different ACA (Y,F′
Y , ω

′), and these are best motivated by focusing on how

to change the Wolfram rule vertex functions fi : F3
2 → F. In particular, one

can (i) reverse the role of left and right, (ii) reverse the role of 0 and 1, or

(iii) do both of these. We call these alterations reflection, inversion and

reflection-inversion of the rule, respectively. We note that in the case of re-

flection and reflection-inversion, there are multiple maps h that can achieve

these alterations, namely the ones corresponding with different reflections

in Dn. We will pick a convention and describe how our choice changes the

local functions and the update order.

Definition 4.24 (Reflection maps). The renumbering of the vertices we

have in mind is achieved by the automorphism r ∈ Aut(Circn) ∼= Dn that

sends vertex i to vertex n + 1− i. This induces a map R : Fn2 → Fn2 by the

action in (1.3), e.g., y = (y1, y2, . . . , yn) = (yn, . . . , y2, y1). We note that R is

an involution. Additionally, r extends to a map r : Wn →Wn via the action

in (1.4), e.g., ω = (ω1, ω2, . . . , ωm), then r(ω) = (r(ω1), r(ω2), . . . , r(ωm)).

Definition 4.25 (Reflected rules). If the vertices of Circn are renumbered

via r, rule Wolf
(k)
i is applied, and then the renumbering is reversed, the net

72

effect is the same as if a different Wolfram rule were applied to the vertex

r(i). Let ℓ be the number that represents this other Wolfram rule. The

differences between k and ℓ are best seen in grid notation. The renumbering

not only changes the vertex at which the rule seems to be applied, but it

also reverses the order in which the 3 coordinates are listed in the restricted

local form. Only the asymmetric local state configurations, i.e. the top and

bottom rows of the grid, are altered by this change so that the grid for ℓ

looks like a reflection of the grid for k across a horizontal line. We call ℓ

the reflection of k and we define a map refl : {0, . . . , 255} → {0, . . . , 255}

with refl(k) = ℓ. On the level of tags, the only change is to switch order of

p2 and p3, so, for example ℓ=01-x is the reflection of k=0-1x.

In short, when ℓ = refl(k), R ◦Wolf
(k)
i ◦ R = Wolf

(ℓ)
r(i) and, since R is an

involution, this can be rewritten as R ◦Wolf
(k)
i = Wolf

(ℓ)
r(i) ◦R.

Proposition 4.26. If ℓ = refl(k), then Wolf(k)n is word-independent if and

only if Wolf(ℓ)n is word-independent.

Proof. Using the fact that R ◦Wolf
(k)
i = Wolf

(ℓ)
r(i) ◦R, it follows immediately

that

R ◦ [Wolf(k)n , ω] = R ◦Wolf(k)ωm
◦ · · · ◦Wolf(k)ω2

◦Wolf(k)ω1

= Wolf
(ℓ)
r(ωm) ◦ · · · ◦Wolf

(ℓ)
r(ω2)
◦Wolf

(ℓ)
r(ω1) ◦R

= [Wolf(ℓ)n , r(ω)] ◦R.

By Corollary 4.23, word-independence of Wolf(ℓ)n implies word-independence

of Wolf(k)n , and the converse holds because ℓ = refl(k) implies k = refl(ℓ). 2

We now show a similar result for the case of inversions.

73

Definition 4.27 (Inversion map). Let 0 and 1 denote the constant states

(0, 0, . . . , 0) and (1, 1, . . . , 1) in Fn2 . Since the function i(a) = 1 + a changes

0 to 1 and 1 to 0, the inversion map I : Fn2 → Fn2 sending y to 1 + y, has

this effect on each coordinate of y. The map I is an involution like R, and

it is easily verified that they commute.

Definition 4.28 (Inverted rules). If a state y is inverted, rule Wolf
(k)
i is

applied, and then the inversion is reversed, the net effect is the same as if

a different Wolfram rule were applied at vertex i, which again, we shall call

ℓ. The differences between k and ℓ are again best seen in grid notation.

The pre-inversion of states effects the local state configurations as though

the grid had been rotated 180◦. The second inversion merely changes every

entry so that 1s becomes 0s and 0s become 1s. Thus the grid for ℓ can

be obtained from the grid for k by rotating the grid and altering every

entry. We call ℓ the inversion of k and define a map inv : {0, . . . , 255} →
{0, . . . , 255} with inv(k) = ℓ. On the level of tags, there are two changes

that take place. Boxes p1 and p4 switch places as do boxes p2 and p3, but

in the process, the boxes are turned over and the numbers changed. If we

look at what this does to the entries in a box, 11 becomes 00, 00 becomes

11, while 10 and 01 are left unchanged. To formalize this, define a map

c : {1, 0, -, x} → {1, 0, -, x} with c(1) = 0, c(0) = 1, c(-) = -, and c(x) = x.

If k has tag p4p3p2p1, then ℓ has tag c(p1)c(p2)c(p3)c(p4), so, for example, ℓ

= x0-1 is the inversion of k = 0-1x.

In short, when ℓ = inv(k), I ◦ Wolf
(k)
i ◦ I = Wolf

(ℓ)
i and, since I is an

involution, this can be rewritten as I ◦Wolf
(k)
i = Wolf

(ℓ)
i ◦ I.

74

Proposition 4.29. If ℓ = inv(k), then Wolf(k)n is word-independent if and

only if Wolf(ℓ)n is word-independent.

Proof. The value of ℓ was defined so that I ◦Wolf
(k)
i = Wolf

(ℓ)
i ◦ I, and thus

I ◦ [Wolf(k)n , ω] ◦ I = [Wolf(ℓ)n , ω]. As before, word-independence of Wolf(k)n

implies word-independence of Wolf(ℓ)n by Corollary 4.23, and the converse

holds from the fact that ℓ = inv(k) implies k = inv(ℓ). 2

As an immediate corollary of Propositions 4.26 and 4.29, when ℓ =

refl(inv(k)) = inv(refl(k)), Wolf(k)n is word-independent iff Wolf(ℓ)n is word-

independent. If we partition the 256 Wolfram rules into equivalence classes

of rules related by reflection, inversion or both, then there are 88 distinct

equivalence classes. The 104 rules listed in Theorem 4.15 are contained in

the union of 41 of them. These 88 classes are equivalently characterized

as the orbits of the action of the Klein 4-group 〈R, I〉 on the set of 256

Wolfram rules. Table 2 displays representatives of these 41 classes in pared

down versions of Table 1. We used reflection and inversion to eliminate 5

of the 10 columns. Every rule with a 1 in the asymmetric portion of its tag

is the inversion of a rule with a 0 instead. In particular, the entries in the 3

columns headed -1, 1- and 11 are inversions of the entries in the columns

headed 0-, -0 and 00, respectively. Next, since reflections switch p2 and p3

we can also eliminate the columns headed -0, -x as redundant. This leaves

the 5 columns headed 00, 0-, --, x- and xx. Since the last 3 do not contain

0s or 1s, further inversions, or inversion-reflections can be used to identify

redundant rows in these columns.

75

p3 0 0

p2 0 -

p4p1 0 8

-- 132 132 140
0- 4 4 12
-0 128 128 136
00 0 0 8
-1 133 133 141
01 5 5 13
-x 129 129 137
0x 1 1 9
1- 164 164 172
10 160 160 168
x0 32 32 40

p3 - x x

p2 - - x

p4p1 72 24 18

-- 132 204 156 150
x- 36 108 60 54
xx 33 105 57 51
-0 128 200 152
10 160 232 184
0- 4 76 28
01 5 77 29
00 0 72
0x 1 73

Table 2. The 41 word-independent Wolfram rules up to
equivalence, separated into two tables by their behavior in
asymmetric contexts.

As mentioned above, the 41 rules listed in Table 2 are representatives of

the 41 distinct equivalence classes of rules whose word-independence needs

to be established in order to prove Theorem 4.15. The rows in each table

have been arranged to correspond as closely as possible with the structure

of the proof. For example, the first three rows of the table on the right-

hand side are the nine equivalence classes shown to be word-independent

by Proposition 4.7.

4.3.5. Potential functions. In this section we prove that four large sets of

Wolfram rules are word-independent. All of the proofs are similar and, when

combined with Proposition 4.7, leave only 6 equivalence classes of Wolfram

rules that need to be discussed separately. Most of the rules discussed in

this section are fixed point systems, for which we will use the notion of a

76

potential function. For the remaining rules, we will find an invertible rule

that agrees with them on their periodic points sets, and then appeal to

Proposition 4.2.

Definition 4.30 (Potential function). A non-increasing potential function

for F : X → X is a map ρ : X → R such that ρ(F (x)) ≤ ρ(x) for all x ∈ X.

A non-decreasing potential function is defined analogously. By potential

function, we mean either a non-increasing or non-decreasing potential func-

tion.

A potential function narrows our search for periodic points since any

element x with ρ(F (x)) < ρ(x) cannot be periodic. A potential function of

an SDS (Y,FY , ω) is a map ρ : Fn2 → R that is a potential function for the

SDS map [FY , ω]. The easiest way to create such a function is to find one

that is a potential function for every local function Fi in FY . Naturally,

ρ must be either a non-decreasing potential function for each Fi or a non-

increasing potential function for each Fi, rather than a mixture of the two,

for the inequalities to work out. When ρ has this stronger property we

call it a potential function for FY since such a ρ is a potential function for

(Y,FY , ω) for every choice of update order ω.

The technique that we will utilize is to find an SDS potential function

ρ such that for any periodic point y, if Fi(y) 6= y, then ρ(Fi(y)) 6= ρ(y).

The existence of such a function ρ implies that all of the periodic points are

fixed points, and thus is word-independence follows from Proposition 4.6.

Proposition 4.31. Rules 0, 4, 8, 12, 72, 76, 128, 132, 136, 140 and 200

are word-independent.

77

* 0

* 0 * 0

* 0

* 0

1 1 * 0

* 0

* 0

* 0 1 1

* 0

* 0

* 0 0 1

* 0

Figure 4.4. Four major classes of word-independent Wol-
fram rules.

Proof. If k is one of the numbers listed above, then its grid notation matches

the leftmost form shown in Figure 4.4. (Each ∗ is a “wild-card”, thus it can

be either a 0 or a 1 so that 16 rules share this form, or 11 up to equivalence).

The four 0s in the grid mean that local functions never remove 0s. Thus,

the map ρ sending y ∈ Fn2 to the number of 0s in y is a non-decreasing

potential function for Wolf(k)n . Moreover, the local functions Wolf
(k)
i cannot

change y without raising ρ(y), so all periodic states are fixed points (for

any update order), and by Proposition 4.6, Wolf(k)n is word-independent. 2

For the next potential function, additional definitions are needed.

Definition 4.32 (Blocks). A state y ∈ Fn2 is thought of as a cyclic binary

n-bit string with the indices taken modulo n, and a substring of y refers

to a set of consecutive indices. We refer to maximal substrings of all 0s as

0-blocks and maximal substrings of all 1s as 1-blocks. If a block contains

only a single number it is isolated and if it contains more than one number

it is non-isolated.

As an example, the state y = 010110 contains one isolated 0-block and

one non-isolated 0-block of length 2 that wraps across the end of the word.

We study how these blocks evolve as the local functions are applied. The

decomposition of a Wolfram rule into its symmetric and asymmetric parts is

78

particularly well adapted to the study of these evolutions. The asymmetric

rules either make no change or shrink a non-isolated 1-block or 0-block from

the left or the right, depending on which of the 4 asymmetric rules we are

considering. Similarly, the 4 symmetric rules either do nothing, they remove

an isolated block, or they create an isolated block in the interior of a long

block.

Proposition 4.33. Rules 160, 164, 168, 172 and 232 are word-independent.

Proof. If k is one of the numbers listed above, then its grid notation matches

the second form shown in Figure 4.4. The specified values (non wild-card)

mean that (i) the only 0s ever removed are the isolated 0s and (ii) isolated

0s are never introduced. In particular, non-isolated blocks of 0s persist

indefinitely, they might grow but they never shrink or split, and the isolated

0s, once removed, never return. Thus, the map ρ that sends y to the

number of non-isolated 0s in y minus the number of isolated 0s in y is a

non-decreasing potential function for Wolf(k)n . As before, the local functions

Wolf
(k)
i cannot change y without raising ρ(y), so all periodic states are fixed

points, and by Proposition 4.6, Wolf(k)n is word-independent. 2

Proposition 4.34. Rules 5, 13, 77, 133 and 141 are word-independent.

Proof. If k is one of the numbers listed above, then its grid notation matches

the third form shown in Figure 4.4. This time the specified values mean

that (i) the only 0s that are removed create isolated 1s, and (ii) isolated

1s are never removed and they never stop being isolated. Thus the map ρ

that sends y to the number of 0s in y plus twice the number of isolated

79

1s in y is a non-decreasing potential function for Wolf(k)n . Once again, the

local functions Wolf
(k)
i cannot change y without raising ρ(y), so all periodic

states are fixed points, and by Proposition 4.6, Wolf(k)n is word-independent.

2

The argument for the fourth collection is slightly more complicated.

Proposition 4.35. Rules 1, 9, 73, 129 and 137 are word-independent.

Proof. If k is one of the numbers listed above, then its grid notation matches

the rightmost form shown in Figure 4.4. The specified values mean that (i)

the only 0s that are removed create isolated 1s, but (ii) isolated 1s can also

be removed. The map ρ that sends y to the number of 0s in y plus the

number of isolated 1s in y is a non-decreasing potential function for Wolf(k)n ,

but the difficulty is that there are local changes with ρ(Wolf
(k)
i (y)) = ρ(y).

This is true for the local change 000→ 010 and for the local change 010→
000. All other local changes raise the potential, but the existence of these

two equalities indicates that there might be (and there are) states that are

periodic under the action of some SDS map [Wolf(k)n , ω] without being fixed.

Rather than appeal to a general theorem, we calculate its periodic states

explicitly in this case.

Fix an update order ω ∈ Wn and, for convenience, let F : Fn2 → Fn2

denote the SDS map [Wolf(k)n , ω] : Fn2 → Fn2 . If a3 = 0 and y contains

a substring of the form 011, then ρ(F (y)) > ρ(y) and y is not periodic

under F . This is because either (i) the substring remains unaltered until

its central coordinate is updated, at which point it changes to 0 and ρ is

raised, or (ii) it is altered ahead of time by switching the 1 on the right to a

80

0 (also raising ρ), or by switching the 0 on the left to a 1 (impossible since

a1 = a5 = 0). Analogous arguments show that if a6 = 0 and y contains the

substring 110, or if a7 = 0 and y contains the substring 111, then y is not

periodic under F . Let P be the subset of Fn2 where these situations do not

occur. More specifically, if a3 = 0 remove the states with 011 substrings,

if a6 = 0 remove the states with 110 substrings, and if a7 = 0 remove the

states with 111 substrings. If all three are equal to 1, then P = Fn2 .

We claim that P = Per[Wolf(k)n , ω], independent of the choice of ω. We

have already shown P ⊂ Per[Wolf(k)n , ω]. Note that P is invariant under F

(in the sense that F (P) ⊂ P) since the allowed local changes are not able to

create the forbidden substrings when they do not already exist. Moreover,

F restricted to P agrees with rule 201 = ---x, the rule of this form with

a3 = a6 = a7 = 1, since whenever a3, a6 or a7 is 0, P has been suitably

restricted to make this fact irrelevant. Finally, rule 201 is invertible, thus F

is injective on P , F permutes the states in P and a sufficiently high power

of F is the identity, showing every state in P is periodic independent of our

choice of ω. 2

4.3.6. Exceptional Cases. At this point there are only 6 remaining rules

whose word-independence needs to be established and they come in pairs:

28 and 29, 32 and 40, and 152 and 184. These final 6 rules exhibit more

intricate dynamics and the proofs are, of necessity, more delicate. We treat

them in order of difficulty.

Proposition 4.36. Rules 32 and 40 are word-independent.

81

Proof. Let k be 32 or 40, let π = (π1, π2, . . . , πn) ∈ Sn be a simple update

order, and let F : Fn2 → Fn2 denote the SDS map [Wolf(k)n , π] : Fn2 → Fn2 .

The listed rules share the leftmost form shown in Figure 4.5 and it is easy

to see that 0 is the only fixed state (1 is not fixed and a2 = a6 = 0

means the rightmost 1 in any 1-block converts to 0 when updated). We

also claim 0 is the only periodic state of F . Once this is established, the

word-independence of Wolf(k)n follows immediately from Proposition 4.6.

The values a0 = a1 = a4 = 0 mean non-isolated 0-blocks persist indef-

initely, they do not shrink or split. Moreover, a2 = a6 = 0 means that

each non-isolated 0-block adds at least one 0 on its left-hand side with each

application of F . In particular, any state y 6= 0 with a non-isolated 0-block

eventually becomes the fixed point 0. Thus no such y is periodic.

The rest of the argument is by contradiction. Suppose that y is a periodic

point of F other than 0 and consider the ith coordinates in y, F (y) and

F (F (y)). We claim that at least one of these coordinates is 0 and at

least one of these is 1. This is because at least 4 out of the 5 local state

configurations that do not involve non-isolated 0s change the coordinate

(and when k = 32 all 5 of them make a change). The only way that yi does

not change value in F (y) is if immediately prior to the application of Wolf
(k)
i ,

the local state configuration is 011. Between this application of Wolf
(k)
i and

the next, the 0 to the left is updated. It either is no longer isolated at

this point (contradicting the periodicity of y) or it now becomes a 1. In

the latter case, the application of Wolf
(k)
i during the second iteration of F

changes the ith coordinate from 1 to 0. Note that we used the simplicity

of the update order to ensure that each coordinate is updated only once

82

0 0

0 1 0 0

* 0

0 1

1 * 0 0

1 0

0 1

0 0 1 *

1 0

Figure 4.5. Three final pairs of word-independent Wolfram rules.

during each pass through F . Finally, suppose that i = π1 and choose y,

F (y) or F (F (y)) so the (i + 1)st coordinate is a 0. As soon as Wolf(k)π1
is

applied, there is a non-isolated 0-block, contradicting the claim that y 6= 0

is a periodic point. 2

We will now show that these four remaining rules agree with Wolfram

rule 156 on their corresponding sets of periodic points, and then apply

Proposition 4.2 to complete the proof of Theorem 4.15. We begin with a

careful analysis of the evolution of the blocks of rule 156.

Example 4.37 (Wolfram rule 156). Because the symmetric part of rule

156 is -- no isolated blocks are ever created or destroyed and thus the

number of blocks is invariant under iteration. Moreover, the four values

a1 = a5 = 0 and a2 = a3 = 1 mean that substrings of the form 01 are

fixed indefinitely, leaving the right end of every 0-block and the left end

of every 1-block permanently unchanged. The other type of boundary can

and does move since p3 = x, and it is its behavior that we want to examine.

Let π ∈ Sn be a simple update order and let F : Fn2 → Fn2 denote the

SDS map [Wolf(156)n , π] : Fn2 → Fn2 . So long as y is not 0 or 1, there is a

1-block followed by a 0-block and a corresponding substring of the form

01 · · ·10 · · ·01. (If y only contains one 0-block and one 1-block, then the

first two digits are the same as the last two digits, but that is irrelevant

83

here.) As remarked above, the beginning of the 1-block and the end of the

0-block are fixed, but the boundary between them can vary.

Suppose both blocks are non-isolated and consider the central substring

10 at positions i and i + 1. These are the only positions in the entire

substring that can vary and the first one to be updated will change value.

Assume the 0 is updated first. The 1-block grows, the 0-block shrinks and

the boundary shifts one step to the right. As we cycle through the local

functions, the simplicity of π guarantees that the (i + 2)nd coordinate is

updated before the (i+ 1)st coordinate is updated a second time. Thus the

boundary shifts one more step to the right. This argument continues to be

applicable until the 0-block shrinks to an isolated 0. At this point, the 0

is still updated before the 1 to its left is updated again, but this time the

0 remains unchanged. When the 1 to its left is updated it changes back

to a 0, the 1-block shrinks, the 0-block grows and the boundary shifts to

the left. The same argument with left and right reversed shows that now

the 0-block continues to grow until the 1-block shrinks to an isolated 1, at

which point the shifting stops and the boundary starts shifting back in the

other direction.

Proposition 4.38. Rules 152 and 184 are word-independent.

Proof. Let k be 152 or 184, let π = (π1, π2, . . . , πn) ∈ Sn be a simple update

order, and let F : Fn2 → Fn2 denote the SDS map [Wolf(k)n , π] : Fn2 → Fn2 .

The listed rules share the second form shown in Figure 4.5 and it is easy

to see that 0 and 1 are the only fixed states (since a2 = a6 = 0 means the

rightmost 1 in any 1-block converts to 0 when updated). We also claim

84

0 and 1 are the only periodic states of F . Once this is established, the

word-independence of Wolf(k)n follows immediately from Proposition 4.6.

Since isolated blocks are never created, the map ρ that sends y to the

number of blocks it contains is a non-increasing potential function for

Wolf(k)n . Moreover, since the only differences between rule 156 and rules

152 and 184 are that rule 152 removes isolated 1-blocks and rule 184 re-

moves both isolated 1-blocks and isolated 0-blocks, the map F agrees with

[Wolf(156)n , π] so long as it is not called upon to update an isolated 1-block

(or an isolated 0-block when k = 184). The long-term behavior of rule 156,

however, as described in Example 4.37, shows that under iteration every y

not equal to 0 or 1 eventually updates such an isolated block, removing it

and decreasing ρ, thus showing that such a y is not periodic. 2

Finally, the argument for Wolfram rules 28 and 29 is a combination of

the difficulties found in the proofs of Propositions 4.35 and 4.38.

Proposition 4.39. Rules 28 and 29 are word-independent.

Proof. Let k be 28 or 29, let π = (π1, π2, . . . , πn) ∈ Sn be a simple update

order, and let F : Fn2 → Fn2 denote the SDS map [Wolf(k)n , π] : Fn2 → Fn2 . The

listed rules share the rightmost form shown in Figure 4.5 and the values

a5 = 0 and a2 = 1 mean that isolated blocks are never removed. Thus the

map ρ that sends y to the number of blocks it contains is a non-decreasing

potential function for Wolf(k)n . The four values a1 = a5 = 0 and a2 = a3 = 1

mean that substrings of the form 01 persist indefinitely, as in Wolfram rule

156. In fact, so long as ρ is unchanged, the behavior of F under iteration

is indistinguishable from iterations of the map [Wolf(156)n , π]. Consider a

85

substring of the form 01 · · ·10 · · ·01 and suppose that the length of the

1-block on the left plus the length of the 0-block on the right is at least

4. We claim that any y containing such a substring is not periodic under

F . If it were, the evolution of this substring would oscillate as described

in Example 4.37 and at the point where the 0-block shrinks to an isolated

0, the 1-block on the left contains the substring 111. Moreover, between

the point when that penultimate 0 becomes a 1 and the point when it is

to switch back, the substring 111 is updated, increasing ρ. When k is 29,

a similar increase in ρ can occur when the 1-block shrinks to an isolated

1 and the 0-block contains the substring 000. In neither case can a state

containing a 1-block followed by a 0-block with combined length at least 4

be periodic under F .

Next, note that when k = 29 both of the constant states 0 and 1 are not

fixed, but that for k = 28 1 is not fixed, while 0 is fixed. Let P be the set of

states containing both 0s and 1s that do not contain a 1-block followed by

a 0-block with combined length at least 4, and, when k = 28, include the

constant state 0 as well. Because we understand the way that such states

y ∈ P evolve under Wolfram rule 156 (Example 4.37), we know that at no

point in the future does a descendent of y ever contain a substring of the

form 111 or 000. Thus P has been restricted enough to make the values of

a7 and a0 irrelevant, and F sends P into itself. Thus for both k = 28 and

29, the local functions agree with those of the invertible rule [Wolf(156)n , π]

on P , and so by Proposition 4.2, rules 28 and 29 are word-independent. 2

86

flips 0 1 2 3 4 5 6 7 8
word-ind. rules 1 8 26 34 26 4 4 0 1

rules 1 8 28 56 70 56 28 8 1
Percentage 100% 100% 93% 61% 37% 7% 14% 0% 100%

Table 3. The number of flips and the probability of word-independence.

4.3.7. Flips and signature. Now that the proof of Theorem 4.15 is complete,

we pause to make a few comments about it and the 104 word-independent

Wolfram rules. For each of the 8 local state configurations, Wolfram rule k

either leaves the central coordinate unchanged or it “flips” its value. The

number of local state configurations that are flipped in this way is strongly

correlated with the probability that a given rule is word-independent, as

shown in Table 3. The numbers in the third row are the binomial coefficients
(

8
i

)

, since they clearly count the number of Wolfram rules with exactly i

flips. The key facts illustrated by Table 3 are that nearly all of the rules

with at most 2 flips are word-independent, the percentage drops off rapidly

between 2 and 6 flips, and word-independence is very rare among rules with

6 or more flips. In fact, all 5 such rules are word-independent because they

are invertible. It would interesting to know whether this observation can

be quantitatively (or even qualitatively) extended to a rigorous assertion

about more general SDSs. In addition to counting the number of flips, one

can keep track of the “sign” of the flips. More precisely, if we call a 0 7→ 1

flip an up-flip and a 1 7→ 0 a down-flip, then we can define the number

of up-flips minus the number of down-flips to be the signature of a vertex

function. This quantity can be normalized in several different ways: (i)

dividing by the number of local state configurations gives a number that

87

describes the average change in vertex state yi as the vertex function is

applied from a random y ∈ Fn2 , and (ii) dividing instead by the number

of total flips describes the percentage of flips that increase (rather than

decrease) the value of a state. If this second quantity is ±1, then the local

function is said to be a one-way function. These are precisely the functions

such that the number of 0s (resp. 1s) is an SDS potential function, and thus

all one-way functions are fixed point systems, and hence word-independent.

Loosely speaking, it is intuitive to expect that the closer the quotient of the

signature by the number of flips is to 0, the “more likely” there are non-

fixed periodic points. Of course, there are obvious counterexamples, such

as the ACA induced by the majority function (rule 232), which has 4 flips

and signature 0, but always induces fixed point SDSs. A modified version

of the signature, as described here, has been studied in [32]. Most of their

results are experimental, and in the setting of classical cellular automata

with parallel update. The emerging field of update order stochastic SDSs

could be well-served by studying the signature.

4.3.8. Periodic Points. The proof of the classification of the 104 word-

independent Wolfram rules, brings to light some interesting dynamical prop-

erties of those rules. In particular, we see how the Wolfram rules truly are

local rules, in the sense that their set of periodic points have local char-

acterizations, namely, from their 0- and 1-blocks. We shift our focus from

the classification of these rules to understanding the periodic sets and the

dynamics. We remark that we presented the proof of Theorem 4.15 as

88

simply as possible, so in some cases, word-independence was proven non-

constructively, in the sense that we did not explicitly give the set of periodic

points. Determining these sets is not difficult, but at times tedious, and we

omit the details. Most periodic point sets are easiest described by speaking

of a set of all y ∈ Fn2 that does not contain a collection of substrings, with

the possible exception of the constant states 0 and 1. There are 28 subsets

of Fn2 that are periodic points of some word-independent ACA. These sets,

along with the list of rules whose periodic points are these sets, are listed

in Table 8 in the appendix. The 28 sets in Table 8 are grouped by their

distinct 15 equivalence classes. Moreover, some of these equivalence classes

differ by only a constant state, 0 or 1.

Disregarding the constant states 0 and 1, there are nine non-empty proper

subsets of Fn2 that appear in Table 8 up to equivalence. For each n, let Pn,i

denote the set of states in Fn2 , defined by:

Pn,1 : {No ‘11’, ‘000’} Pn,6 : {No ‘101’, ‘010’}

Pn,2 : {No ‘11’, ‘010’} Pn,7 : {No ‘11’}
Pn,3 : {No ‘11’, ‘101’} Pn,8 : {No ‘101’}
Pn,4 : {No ‘000’, ‘111’, ‘1100’} Pn,9 : {No ‘111’}

Pn,5 : {No ‘000’, ‘111’}.

For each Pn,i, let P̄n,i denote its inversion, i.e., P̄n,i = I(Pn,i), where I : Fn2 →
Fn2 is the inversion map from Definition 4.27. Notice that P̄n,i = Pn,i only

for i ∈ {5, 6}. These families of sets make up the Wolfram poset, under the

relation of subset containment. We draw Fn2 and its covering relations, but

omit ∅ (non-empty by including 0 or 1). Additionally, the subscript ‘n’ is

89

omitted for clarity.

Fn2

mmmmmmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQQQQQ

��
��

��
��

��
��

��
��

��
�

88
88

88
88

88
88

88
88

88
8

P9

��
��

��
�

QQQQQQQQQQQQQQQQQQQ P̄9

88
88

88
8

mmmmmmmmmmmmmmmmmmm

P7

��
��

��
�

88
88

88
8

QQQQQQQQQQQQQQQQQQQ P8

��
��

��
�

JJJJJJJJJJJJ
P5

��
��

��
�

88
88

88
8

P̄8

tttttttttttt

88
88

88
8

P̄7

��
��

��
�

88
88

88
8

mmmmmmmmmmmmmmmmmmm

P2 P3 P4

JJJJJJJJJJJJ

ggggggggggggggggggggggggggggggggg
P6 P̄4

tttttttttttt

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
P̄3 P̄2

P1 P̄1

4.4. Invariant sets. Recall that proving word-independence of most of the

104 rules was straightforward. However, there were a few exceptional cases

that we dealt with by determining the set of periodic points, finding an

invertible rule that agreed with it on that set, and applying Theorem 4.8.

It is interesting to ask whether this is a complete characterization of the

word-independent rules, or in other words, whether the 104 rules are word-

independent simply by virtue of agreeing with an invertible rule on an

invariant set that contains their periodic points. This will also help us

better understand how the rules are distributed on the Wolfram poset.

On a given set Pn,i, many of the 256 Wolfram rules agree with each

other. For example, since there are no substrings of ‘11’ or ‘000’ in an

element of Pn,1, then two Wolfram rules that differ only on the neighbor-

hoods {111, 110, 011, 000} will be the same when restricted to Pn,1. Thus

there are only 16 distinct restrictions of Wolfram rules to Pn,1, and only one

90

of these maps Pn,1 into itself, namely, the identity map. Consequently, if

Per(Wolf(k)n) is contained in Pn,1, then Fix(Wolf(k)n) = Per(Wolf(k)n) = Pn,1,

and rule k is word-independent.

For every word-independent Wolfram rule k, let E(k) be the set of rules

that agree with rule k on Per(Wolf(k)n). It is not difficult to compute E(k)

for every Wolfram rule. We have done this, and point out several interesting

observations about these sets.

Remark 4.40. Every set E(k) contains an invertible rule.

Remark 4.41. If the set of non-constant periodic points of rule k is Pn,i (or

P̄n,i) for i 6= 3, then E(k) contains only word-independent rules.

Remark 4.40 suggests that the method used to prove the exceptional

cases of Theorem 4.15 can be used to prove it for all Wolfram rules that

are not automatically word-independent by either having Per(FY) = Fn2 or

only constant states. Specifically, there are three classes of periodic points:

• Per(Wolf(k)n) = {0}, {1}, or {0, 1},
• Per(Wolf(k)n) = Fn2 ,

• Per(Wolf(k)n) = Pn,i or P̄n,i (plus possibly {0} or {1}).

In the first two cases, Wolf(k)n is trivially word-independent. In the third

case, Remark 4.41 says that there exists an invertible rule that agrees with

it on Per(Wolf(k)n), and word-independence follows from Theorem 4.8.

Remark 4.41 is interesting because it shows that a much stronger result

of Theorem 4.8 nearly holds for the special case of ACAs. By a special case

of Theorem 4.8, in order to prove that a given rule k is word-independent,

91

it suffices to find M and an invertible rule ℓ that agrees with rule k on M .

However, for nearly every ACA, the much weaker condition that rule ℓ need

simply be word-independent suffices.

4.5. Dynamics groups of ACAs.

4.5.1. Coxeter matrices. Lemma 4.13 greatly simplifies the study of the

dynamics groups of ACAs, because Wolfram rules are invariant over Cn, a

transitive subgroup of Aut(Circn) ∼= Dn. From Corollary 4.12, the Coxeter

matrix of a fixed point ACAs is the identity matrix. Moreover, 26 of the

41 word-independent ACAs up to equivalence are fixed point systems. The

following theorem describes the Coxeter matrices of the remaining 15 cases.

Theorem 4.42. Let Wolf(k)n be word-independent and assume Fix(Wolf(k)n)

6= Per(Wolf(k)n). Then

mij =

1 , i = j

2 , |i− j| 6= 1 mod n

mk , |i− j| = 1 mod n .

where mk ∈ {2, 3, 4, 6, 12}.

Proof. Wolf(k)n is invariant under the transitive subgroup Cn ≤ Aut(Circn).

By Lemma 4.13, if i 6= j, then mij ≥ 2. Since the only edges in Circn are

{i, i + 1}, then if |i − j| > 1 modulo n, the functions Fi and Fj commute,

which means that mij ≤ 2. Together, we conclude that if |i− j| > 1, then

mij = 2. Finally, consider the case when |i − j| = 1. Because Coxeter

matrices are symmetric, and the only edges are of the form {i, i + 1}, the

92

only values of mi,j that remain are mi,i+1. Let h ∈ Aut(Circn) defined by

h : k 7→ k + 1. Observe that

h ◦ (Fi ◦ Fi+1) ◦ h−1 = Fi+1 ◦ Fi+2 .

We conclude thatmimi+1 = mi+1mi+2 for all i. In the statement of Theorem

4.42, we call this value mk. Now, it only remains to determine the possible

values of mk. Of the 41 equivalence classes of word-independent Wolfram

rules, only 15 of them have non-fixed points. Checking these cases (details

omitted) confirms that mk ∈ {2, 3, 4, 6, 12}. 2

By Theorem 4.42, the Coxeter matrix of a word-independent Wolfram

rule is completely determined by the value mi,i+1, which can be either 1,

2, 3, 4, 6, or 12. The 104 word-independent rules were arranged in a very

neat fashion by blocks in Table 1. By suitably rearranging the rows and

columns, we obtain a table in which the rules are not quite as organized,

but the values of mi,i+1 are better grouped. This is done in Table 4. Notice

that if mk ∈ {3, 4, 12}, then Wolf(k)n is invertible. Table 4 shows that most

of the word-independent Wolfram rules are fixed point systems, and thus

have a trivial dynamics group. We now analyze the remaining rules.

4.5.2. Abelian and linear dynamics groups. There are a few Wolfram rules

for which the dynamics groups are readily computed to be well-known

groups.

Proposition 4.43. For k ∈ {28, 29, 51} and n > 4, G(Wolf(k)n) ∼= Cn
2 and

H(Wolf(k)n) ∼= C2.

93

p3 x - x - - 0 0 - 1 1

p2 x x - - 0 - 0 1 - 1

p4p1 18 66 24 72 64 8 0 74 88 90

0x 1 6 6 6 6
x1 37 6 6 6 6
-x 129 12 4 4 6 6 6 6
x- 36 12 4 4 6 6 6 6
xx 33 2 12 12 3
-- 132 3 1 1 1 1 1 1 1 1 1
-0 128 1 1 1 1 1 1 1 1 1
1- 164 1 1 1 1 1 1 1 1 1
10 160 1 1 1 1 1 1 1 1 1
-1 133 2 2 1 1 1 1 1 1 1
0- 4 2 2 1 1 1 1 1 1 1
01 5 2 2 1 1 1 1 1 1 1
00 0 1 1 1 1
11 165 1 1 1 1
1x 161 1 1 1
x0 32 1 1 1

Table 4. The 104 Wolfram rules, and the value mi,i+1.

Proof. The only fixed points of these rules are the alternating states, i.e.,

0101 · · ·01 and 1010 · · ·10. Thus the number of non-fixed periodic points is

equal to |Pn,3| when n is odd, and |Pn,3|−2 when n is even. This number is

zero for n = 4 (leading to a trivial dynamics group), and is at least as large

as n for n > 4. For rules 28 and 29, mi,i+1 = 2, and so the dynamics group

is abelian, with every generator having order 2. Thus the map defined by

ι : G(Wolf(k)n) −→ Cn
2 , ι : Fi 7−→ ei

is an isomorphism. Also, for any simple update order π ∈ Sn, ι maps

[Wolf(k)n π] to the diagonal element in Cn
2 , and so H(Wolf(k)n) ∼= C2. We

remark that rule 51 is the “local inversion map” id from Example 4.10,

94

where we verified that its full and permutation dynamics groups are Cn
2

and C2, respectively. 2

It is perhaps surprising that rules 28 and 29 were among the six excep-

tional cases that we dealt with separately in the proof of Theorem 4.15 due

to complications in analyzing their dynamics, yet they have very simple

dynamics groups.

Proposition 4.44. G(Wolf(102)n) ∼= GL(n, 2).

Proof. Rule 102 is linear, with wolf(102)n : (yi−1, yi, yi+1) = yi + yi+1. The

matrix representation of the update rule at vertex i is In +Ei,i+1, where In

is the n × n identity matrix, and Ei,i+1 is the matrix everywhere 0 except

for 1 in the (i, i+ 1) entry. It is known [41, pg. 455] that the n matrices of

this form generate GL(n, 2), and thus G(Wolf(102)n) ∼= GL(n, 2). 2

We have used a computer program to compute H(Wolf(102)n) for small

values of n, and for 4 ≤ n ≤ 8, it is GL(n, 2) as well. This likely can be

proven by showing that a certain set of matrices generates GL(n, 2), but we

have not yet been able to show this.

4.5.3. Alternating and symmetric dynamics groups. There are a handful of

Wolfram rules whose dynamics groups we have computed for 4 ≤ n ≤ 8,

and are either the alternating group or the symmetric group. The size of

these groups depend on the number of non-fixed periodic points. In this

section, we state our conjectures, which are based on the assumption that

these patterns hold for larger n.

95

Conjecture 4.45. G(Wolf(57)n) ∼= H(Wolf(57)n) ∼= An and G(Wolf(54)n) ∼=
H(Wolf(54)n) ∼= An−1.

Rules 54 and 57 are invertible. Rule 54 has no fixed points, and the only

fixed point of rule 57 is the constant state 0.

The next class of rules are characterized by having non-fixed periodic

point set Pn,7 (or P̄n,7), which is the set of n-bit cyclic strings that have

non-isolated 1s (or 0s). It is well-known [19] that the cardinality of this

set is counted by the Lucas numbers L(n). The Lucas numbers, like the

Fibonacci numbers F (n), are defined by the recurrence an = an−1 + an−2,

with the difference being the initial values. The first two Fibonacci numbers

are defined to be F (0) = 0 and F (1) = 1, whereas the first two Lucas

numbers are L(0) = 2 and L(1) = 2. These observations about Pn,7 tell us

that the dynamics groups of these rules must be contained in the symmetric

group SL(n).

Conjecture 4.46. If k ∈ {1, 9, 110, 126}, then

G(Wolf(k)n) ∼=

AL(n) F (n− 1) even

SL(n) F (n− 1) odd,

where L(n) is the nth Lucas number, and F (n) is the nth Fibonacci number.

One perhaps interesting part of this conjecture is how the parity of the

Fibonacci numbers determines whether the group is the alternating or sym-

metric group. Consider rule 1. Each local update function Wolf
(1)
i , being

an involution, is a product of disjoint transpositions. To count how many,

96

notice that for y ∈ Pn,7, Wolf
(1)
i (y) 6= y iff yi−1 = yi+1 = 0. The number

of disjoint transpositions of Wolf
(1)
i is the number of pairs of states of this

form that there are in P7. This number is precisely the number of substrings

of the remaining n − 3 vertices that do not contain consecutive 1s. When

n = 4, this is 2, the 3rd Fibonacci number, and when n = 5, this is 3, the

4th Fibonacci number. Also, it is easy to see that this number satisfies the

recurrence relation an = an−1 + an−2. Therefore, Wolf
(1)
i is a product of an

even number of disjoint transpositions iff F (n−1) is even. This shows that

G(Wolf(1)n) ≤ AL(n) when F (n− 1) is even.

It remains to show that when F (n− 1) is odd, we can obtain any trans-

position, and when F (n − 1) is even, we can obtain any 3-cycle. Also, we

must argue why this holds for rules 9, 110, and 126 as well.

There are five Wolfram rules up to equivalence that we have not yet dealt

with: rules 150, 105, 78, 108, and 156. Four of these five come in pairs,

which we will discuss separately.

4.5.4. Exceptional cases: Rules 150 and 105. Rules 150 and 105 are both

invertible, and are closely related. Rule 150 is the parity function par3 and

rule 105 is the negation of parity, par3 which are defined by

par3, par : F3
2 −→ F2, par3(x) =

3
∑

i=1

xi , par3(x) = 1 +
3

∑

i=1

xi .

These are also the two rules with mi,i+1 = 3. In light of this, it is not

surprising that the dynamics groups of these two rules are related as well.

We have not pinned down these groups, but have computed their orders for

small values of n, and have conjectured their orders for all n. With the help

97

of a computer program, we have computed the size of both the full dynamics

group G, and the permutation dynamics group H for 4 ≤ n ≤ 8. We report

in Table 5 the value of |G|, and for convenience, the index [G : H]. The

k = 150 |G| [G : H]

n = 4 4! · 24−2 2
n = 5 5! · 24−1 1
n = 6 6! · 24−2 2
n = 7 7! · 24−1 1
n = 8 8! · 24−2

k = 105 |G| [G : H]

n = 4 4! · 24−2 2
n = 5 5! · 24−1 1
n = 6 6! · 24−1 2
n = 7 7! · 24−1 1
n = 8 8! · 24−2

Table 5. The orders of the dynamics groups of rule 150
(parity) and rule 105 (1+parity).

slight differences in the order of the groups is due to the fact that for certain

values of n, rules 150 and 105 have a different number of fixed points, which

don’t contribute to the dynamics group. The fixed points of rule 150 are the

constant states 0 and 1, and if n is even, then additionally the alternating

states 1010 · · ·10 and 0101 · · ·01. The fixed points of rule 105 are all the

form 1100 · · ·1100 and if n is a multiple of 4, then there are 4 of these,

otherwise there are none. This insight leads to the following conjecture.

Conjecture 4.47. The order of the dynamics groups of rules 150 and 105

are

|G(Wolf(105)n)| =

n! · 2n−2 4 | n

n! 2n−1 4 ∤ n

|G(Wolf(150)n)| =

n! · 2n−2 2 | n

n! 2n−1 2 ∤ n.

It is also reasonable to conject that if n is even, then [G : H] = 2, and

if n is odd, then G = H . If this is true, as the computational results

suggest, it can likely be explained by showing that H is a product of n

98

odd permutations, and so H contains only the even permutations of G. We

conclude this section by pointing out that the dynamics group of Rule 150

is isomorphic to the subgroup of GL(n, 2) that is generated by matrices of

the form I + Ei,i−1 + Ei,i+1, where Ei,j is the matrix of all 0s, except the

(i, j)-entry is 1.

4.5.5. Exceptional cases: Rules 73 and 108. Another pair of rules that have

complicated, but related dynamics groups are rules 73 and 108. The peri-

odic point set of rule 73 is Pn,9, which is the largest periodic point set that

is not Fn2 . On this set, rule 73 agrees with rule 108, which is invertible. In

light of this, it is reasonable to expect that the dynamics groups of these

two rules to have some similarities. We used a computer program to cal-

culate the order of the full dynamics group and the permutation dynamics

group for 4 ≤ n ≤ 7, which are shown in Table 6. We note that neither

k = 73 |G| [G : H]

n = 4 7!/2 1
n = 5 16 · 11! 16
n = 6 11664 · 18! 32
n = 7 106 · 213 · 36 · 30! 64

k = 108 |G| [G : H]

n = 4 7!/2 1
n = 5 16 · 11! 16
n = 6 23328 · 18! 32
n = 7 106 · 213 · 313 · 30! 64

Table 6. The orders of the dynamics groups of rule 73 and
rule 108.

of these sequences of |G| for increasing n exists in Neal Sloane’s Database

of Integer Sequences [38], making it unlikely that the dynamics groups are

comprised of a common class of groups.

4.5.6. Exceptional cases: Rule 156. We computed the order of the dynamics

groups of rule 156 for 4 ≤ n ≤ 7, which are shown in Table 7, and are

99

significantly larger than those of any other rule. As with rules 78 and 108,

k = 156 |G| [G : H]

n = 4 648 8
n = 5 7962624 16
n = 6 2176792336000000 32
n = 7 7860406034514963836436480000000 64

Table 7. The orders of the dynamics groups of rule 156.

the sequence of the orders of G for increasing n does not currently appear

in [38].

4.6. Concluding remarks about ACAs. To gain a clearer picture of the

dynamics of ACAs, it is worthwhile to study the 152 non-word-independent

rules as well. However, this is a large task is is relegated to a future research

project. We summarize our analysis of the 104 word-independent Wolfram

rules in Table 2 in the Appendix, by listing the decimal representation, tag,

dynamically equivalent rules, number of flips, signature, Coxeter number,

dynamics groups, and periodic point set, of each rule from a transversal.

The rules are grouped into three blocks, with first block containing the the

symmetric ones, the second block containing the quasi-symmetric rules, and

the third containing the remaining rules. Though our study of determining

the dynamics group is incomplete, we list the conjectured groups for those

that we think we know. We comment in hindsight on a few properties of

these rules that can be read off of Table 2. First of all, most of the rules (82

out of 104) are word-independent by virtue of by either being invertible, or

a fixed point system. In fact, we can conclude the following.

100

Remark 4.48. If the set of non-constant (not 0 or 1) periodic points of a

word-independent set of Wolfram rules Wolf(k)n is Pn,1, Pn,2, Pn,3, Pn,5, Pn,6,

Pn,8, or an inversion of one of these, then Fix(FY) = Per(FY).

Through this study of ACAs, we gained a better understanding of the 104

word-independent Wolfram rules and how they are related by their sets of

periodic points, and a good number of the techniques and ideas developed in

this section can be extended to general SDSs. We learned that roughly 40%

of ACAs are word-independent, and it would be interesting to investigate

whether this holds for systems over other families of graphs. The concepts

such as flips and signature likely are useful in the study of stochastic SDSs.

Thus this study is a good starting point for exploring in either of these

directions because of the simplicity of ACAs.

5. Stochastic Sequential Dynamical Systems

Most of the SDS literature has assumed that the local functions, under-

lying graph, and update order, are deterministic. In this section we lay

the groundwork for the study of stochastic sequential dynamical systems,

or “StSDSs.” There are many ways to add stochasticity to an SDS. The

dependency graph, functions, or update order can all be chosen from a dis-

tribution. Here, we will only consider the case where the dependency graph

is chosen from a random graph model, and the update order is chosen from a

distribution. There are also many different properties and behaviors about

stochastic SDSs that can be studied. In this section, we will look at how

symmetries in the update order distribution are reflected in symmetries in

the phase space.

101

5.1. Preliminaries. Throughout this section, we will only be considering

simple update orders. Though these results can be extended to word update

orders without much trouble, it complicates the notation without adding

any deeper insight. Let P = {(π1, p1), . . . , (πk, pk)} denote a probability

distribution of update orders, i.e., update order πi has associated probability

pi. For ease of notation, we will omit a (πi, pi) pair from P if pi = 0, and

so 1 ≤ |P| ≤ n!.

Definition 5.1 (Balanced random graph model). Let Y be a graph on n

vertices. A random graph model G(Y) is said to be balanced if isomorphic

subgraphs have the same probability.

The key property of balanced random graph models that we will use is

that if σ ∈ Aut(Y), then G(Y) and G(σ(Y)) are identical models. Two

common balanced random graph distributions are Gn,p = Gn,p(Kn) and

Gn,M = Gn,M(Kn). In Gn,p(Y), an element Y ∈ Gn,p(Y) has the same

vertex set as Y , and the probability that Y contains the edge {i, j} is p

if {i, j} ∈ e[Y], and 0 otherwise. Thus, Y ∈ Gn,p(Y) (where Y ≤ Y) has

probability

Pr(Y) = p|e[Y]| · (1− p)|e[Y]|−|e[Y]|.

In Gn,M(Y), every subgraph with exactly M edges has the same probability,

so Y ∈ Gn,p(Y) (with m edges) has probability

Pr(Y) =

(|e[Y]|
m

)−1

.

Because we will be choosing the base graph from a distribution, the degree

of a vertex depends on which random graph is chosen. Thus it is reasonable

102

to impose the blanket hypothesis that all sequences of local functions are

symmetric (they depend only the multiset of vertex states) and homoge-

neous (if fi, fj : Kd → K, then fi = fj).

Definition 5.2 (Stochastic SDS). A stochastic sequential dynamical system

(StSDS) is a triple (G(Y),FY ,P) consisting of a balanced random graph

model G(Y), a set of homogeneous symmetric local functions FY , and a

distribution P of update orders.

A classical SDS has an associated SDS mapKn → Kn, and this is encoded

by the phase space, Γ[FY , π]. Since the phase space is a directed graph where

the out-degree of every vertex is 1, its adjacency matrix may be viewed as

a very simple Markov chain, which we will denote by M[FY , π]. We bring

this up because it is more convenient to speak of a stochastic SDS map as

a Markov chain than as a stochastic map Kn → Kn, or an edge-weighted

digraph. The Markov chain of a stochastic SDS is the weighted average of

the Markov chains of the individual SDSs, i.e.,

M[FG(Y),P] =
∑

Yi∈G(Y)

∑

(πj ,pj)∈P

pj Pr(Yi) ·M[FYi
, πj] =

∑

i,j

Cij ·M[FYi
, πj] ,

where we define Cij = pj ·Pr(Yi). The Markov chain is a |Kn|×|Kn| matrix,

and we shall denote its entries by m(y, z), where y, z ∈ Kn.

We will point out several special cases of stochastic SDS maps. An StSDS

map over a fixed base graph Y is the special case [FG(Y),P] when G(Y) =

Gn,p(Y) and p = 1, or alternatively, when G(Y) = Gn,M(Y) and M = |e[Y]|.
We will abbreviate the associated map as simply [FY ,P]. Also, an StSDS

with a fixed update order π is the special case when P = {(π, 1)}, which we

103

will abbreviate as [FG(Y), π]. Thus, the classical non-stochastic SDS map is

[FY , π] = [FG(Y), {(π, 1)}]

where G(Y) = Gn,p(Y) and p = 1.

5.2. Dynamical equivalence of StSDSs. Recall that two SDSs are dy-

namically equivalent if their maps are related by conjugation of a bijection

Kn → Kn, which is equivalent to the two Markov chains being similar ma-

trices. We pause to restate the result of Proposition 2.9 in terms of Markov

chains. The result of Proposition 2.9 was that if ϕ ∈ Aut(Y), then

[FY , ϕ ∗ π] = ϕ ◦ [FY , π] ◦ ϕ−1 ,

where an element ϕ ∈ Aut(Y) composed with a map Kn → Kn was defined

by the action from (1.4). In the language of Markov chains, this means that

(5.1) M[FY , ϕ ∗ π] = Pϕ ◦M[FY , π] ◦ P−1
ϕ ,

where Pϕ is an associated permutation matrix, which we will describe ex-

plicitly. The idea is that each row and column corresponds with a point in

Kn, and the matrix Pϕ permutes the rows and columns according to the

permutation of ϕ on the coordinates of Kn. We now define this formally.

Definition 5.3 (Induced permutation). For ϕ ∈ Sn, the induced permuta-

tion of ϕ, denoted ϕ̃ ∈ SKn, is the permutation of Kn that arises from the

extension of the action of ϕ on the standard basis vectors, i.e.,

{ϕ · e1, . . . , ϕ · en} = {eϕ−1(1), . . . , eϕ−1(n)} ,

104

to all of Kn. For a fixed ordering of Kn, let Pϕ be the permutation matrix

of ϕ̃. If conjugation by Pϕ preserves a Markov chain M, then we say that

the induced permutation ϕ̃ preserves M.

As an example suppose σ = (1 2) ∈ S4, and K = F2. Then σ̃ ∈ SK4 is

the permutation that swaps the first two entries of elements in K4, i.e.,

σ̃ = (0100 1000) (0101 1001) (0110 1010) (0111 1011) ∈ SK4 .

Since any permutation is a composition of transpositions, and any permu-

tation of the vertices of the phase space can be viewed as conjugation of the

Markov chain by a permutation matrix, we may view any induced permu-

tation as a sequence of steps where we swap the ith row of the Markov chain

with jth row, and the ith column of the Markov chain with jth column. This

operation is easily seen to preserve the matrix, except for the 2× 2-minor

corresponding to the ith and jth entries, which get permuted as follows:

(5.2)

mii mij

mji mjj

 7−→

mjj mji

mij mii

 .

Remark 5.4. Let (i j) ∈ Sn, and let the induced permutation in SKn be

(i1 j1)(i2 j2) · · · (im jm) .

Then the StSDS map is fixed under the action of the transposition (i j) if

and only if for every k = 1, . . . , m,

mik,l = mjk,l and ml,ik = ml,jk , for all l = 1, . . . , |Fn| .

105

This is equivalent to saying that the ithk and jth
k rows and columns are

identical, except for the 2 × 2 ikjk-minor, which must be symmetric and

with the same diagonal entries. To check whether an element σ ∈ Sn is

an StSDS automorphism, first break it into transpositions, and then apply

the above steps successively, and see if the resulting operations preserve the

Markov chain.

This can naturally be extended to stochastic SDSs.

Definition 5.5 (Dynamical equivalence of StSDSs). Two stochastic SDSs

(G(Y),FG(Y),P) and (G′(Y),F′
G(Y),P ′) are dynamically equivalent if there

is an invertible |Kn| × |Kn| matrix P such that

M[FG(Y),P] = P ·M[F′
G′(Y),P ′] · P−1 .

The action of Sn on the set of update orders from (1.4) can be extended

to a distribution of update orders, by

ϕ ∗ P = {(ϕ ∗ π1, p1), . . . , (ϕ ∗ πk, pk)} .

Now, Proposition 2.9 can extended rather easily to stochastic SDSs.

Proposition 5.6. Let Y be a graph, and ϕ ∈ Aut(Y). For any update

order distribution P, the StSDS (G(Y),FG(Y),P) is dynamically equivalent

to (G(Y),FG(Y), ϕ ∗ P), and the equivalence is given by

(5.3) M[FG(Y), ϕ ∗ P] = Pϕ ·M[FG(Y),P] · P−1
ϕ .

106

Proof. The proof follows from breaking up the StSDS map into a linear

combination of individual SDS maps, and applying Proposition 2.9, to get

M[FG(Y), ϕ ∗ P] =
∑

Yi∈Y

∑

(πj ,pj)∈P

Ci,jM[FYi
, ϕ ∗ πj]

=
∑

Yi∈Y

∑

(πj ,pj)∈P

Ci,j
(

Pϕ ·M[FYi
, πj] · P−1

ϕ

)

= Pϕ ·

∑

Yi∈Y

∑

(πj ,pj)∈P

Ci,jM[FYi
, πj]

 · P−1
ϕ

= Pϕ ·M[FG(Y),P] · P−1
ϕ ,

and hence the proposition is proven. 2

5.3. Stabilizer subgroups. Proposition 5.6 tells us that Aut(Y) acts on

the set of StSDSs over G(Y). For a classical SDS, if ϕ ∈ Aut(Y) is not the

identity, then conjugation by the permutation matrix Pϕ does not preserve

the Markov chain. However, in the case of stochastic SDSs, it can happen

that ϕ ∗ P = P for a non-identity ϕ, and thus

Pϕ ·M[FG(Y),P] · P−1
ϕ = M[FG(Y), ϕ ∗ P] = M[FG(Y),P] .

The subgroup of all such ϕ ∈ Aut(Y) is the stabilizer subgroup of this

action. We will show some basic results about the symmetries of stochastic

SDSs by analyzing their stabilizer subgroups. It is reasonable to expect

that symmetries within the update order distribution will be reflected in

symmetries in the dynamics, or the Markov chain, of the stochastic SDS.

For example, consider a stochastic SDS over Gn,p(Kn). If the update order

is chosen uniformly from Sn, and Kn is fully symmetric, the n vertices

107

are dynamically indistinguishable. It makes sense that ϕ ∈ Aut(Kn) ∼=
Sn acting on Kn should have no effect on the StSDS, or said differently,

Stab[FG(Y),P] ∼= Sn. In contrast, suppose that the update order distribution

consists of a single ordering, π. Then in principle, we cannot necessarily

expect the action of ϕ ∈ Sn on Kn to preserve the dynamics, since we no

longer have uniformity of the n vertices. In particular, vertex π1 is updated

first, a role played by none of the other vertices.

Definition 5.7. Let H < Sn, and fix π ∈ SY . Define the update order

distribution

PπH = {(h · π, |H|−1) : h ∈ H} .

In many of the results, π is arbitrary, so we will denote such a set PπH simply

by PH .

At first, it may seem unnatural and contrived to expect the update order

distribution to have a group structure, but we do not find this unreason-

able. For example, if the distribution is uniform over all of Sn, then there

is a natural group structure, namely Sn. For a more complicated, and more

convincing example, suppose that the underlying graph has n vertices ar-

ranged in a circle. If one were to pick the update order by first choosing

a vertex at random, then updating in a clockwise fashion, the distribution

would have a group structure of Cn < Sn. However, if one could update

the vertices by traversing either clockwise or counterclockwise, then the

distribution would have a group structure of Dn < Sn.

108

Proposition 5.8. If H < Aut(Y), then

H ≤ Stab[FG(Y),PH] .

Proof. Pick ϕ ∈ H . It follows easily that ϕ∗PH = PH . By Proposition 5.6,

Pϕ · [FG(Y),PH] · P−1
ϕ = [FG(Y), ϕ ∗ PH] = [FG(Y),PH] ,

and hence ϕ ∈ Stab[FG(Y),PH]. 2

In general, one should expect that H ∼= Stab[FG(Y),PH]. However, extra

automorphisms can arise for certain simple or degenerate functions that

will give rise to a larger stabilizer subgroup. For example, if FY = IdY , the

identity functions, then Stab[FG(Y),PH] will always be Aut(Y), regardless of

H . Intuitively, it seems reasonable that as we increase the size of the group

H , more symmetries should arise inside the StSDS, which is the motivation

for the next theorem.

Proposition 5.9. If H < G < Aut(Y), then

Stab[FG(Y),PH] < Stab[FG(Y),PG] .

Proof. Let {giH} be a complete set of coset representatives for H in G.

(Note: H need not be normal in G). It easily follows that

M[FG(Y),PG] =
1

[G : H]

[G:H]
∑

i=1

M[FG(Y), gi ∗ PH].

Let ϕ ∈ Stab[FG(Y),PH]. Since Pϕ preserves M[FG(Y),PH] under conjuga-

tion, it suffices to show that Pϕ preserves M[FG(Y),PG] under conjugation

109

as well. By Proposition 5.6,

Pϕ ·M[FG(Y),PG] · P−1
ϕ =

1

[G : H]

[G:H]
∑

i=1

Pϕ ·M[FG(Y), gi ∗ PH] · P−1
ϕ

=
1

[G : H]

[G:H]
∑

i=1

M[FG(Y), ϕ(gi) ∗ PH]

= M[FG(Y),PG] .

The last equality holds because {ϕ(gi)H} is a complete set of coset rep-

resentatives for H in G. We have thus shown that ϕ ∈ Stab[FG(Y),PG].

2

5.4. An example. We conclude this section on stochastic SDSs by pre-

senting an explicit example that illustrates the results of Propositions 5.8

and 5.9. Consider the random graph distribution G3,2/3 := Gn,p(K3) for

n = 3 and p = 2/3, and let FY = (Park), the parity functions over K = F2.

Though it is natural to have the vector vk to correspond with the binary

representation of k, we will deviate slightly, and swap the roles of v3 and

v4, and use the following:

v0 v1 v2 v3 v4 v5 v6 v7

000 001 010 100 011 101 110 111

The motivation of this is to group the S3-orbits together, so the symmetries

of the Markov chain are more apparent. We also will show supplementary

lines to emphasize the blocks of the Markov chain that exhibit such symme-

tries. Thus SK3 = S8, which we write as the group of permutations of the

set {0, 1, 2, . . . , 7}. The induced permutation of the transpositions (1 2),

110

(2 3), and (4 5) are (1 2)(5 6), (2 3)(4 5), and (1 3)(4 6), respectively.

Recall that Pϕ for one of these transpositions in S3 is the permutation ma-

trix that permutes the rows and columns according the respective induced

permutation.

Consider the 3-cycle ϕ = (0 1 2), which generates C3 < S3, and let π be

the update order 012 ∈ SK3. Then

PC3 := PπC3
= {(012, 1/3), (120, 1/3), (201, 1/3)} .

It is readily checked that M[Par, Gn,p, 012] 6= M[Par, Gn,p, 120], but by Propo-

sition 5.8, since ϕi ∗ PC3 = PC3 for any i, then the the stabilizer subgroup

of the stochastic SDS is 〈ϕ〉. Equivalently,

(5.4) 〈ϕ〉 →֒ Stab[ParGn,p(K3),PC3] ,

111

and we can verify this explicitly by conjugating the Markov chain by Pϕ:

[ParG
3, 23

,PC3] =
1

3
[ParG

3, 23

, 012] +
1

3
[ParG

3, 23

, 120] +
1

3
[ParG

3, 23

, 201]

=
1

81

27 0 0 0 0 0 0 0

0 3 6 10 0 0 4 4

0 0 3 6 6 12 0 0

0 0 0 3 0 6 10 8

0 10 0 4 5 2 6 0

0 6 12 0 0 5 2 2

0 0 6 0 12 0 5 4

0 8 0 4 4 2 0 9

+
1

81

27 0 0 0 0 0 0 0

0 3 6 0 0 6 12 0

0 0 3 0 10 0 6 8

0 6 10 3 4 0 0 4

0 6 0 0 5 12 0 4

0 0 4 10 6 5 2 0

0 12 0 6 2 0 5 2

0 0 4 8 0 4 2 9

+
1

81

27 0 0 0 0 0 0 0

0 3 0 0 6 10 0 8

0 10 3 6 0 4 0 4

0 6 0 3 12 0 6 0

0 0 6 12 5 2 0 2

0 0 0 6 0 5 12 4

0 4 10 0 2 6 5 0

0 4 8 0 2 0 4 9

=
1

81

81 0 0 0 0 0 0 0

0 9 12 10 6 16 16 12

0 10 9 12 16 16 6 12

0 12 10 9 16 6 16 12

0 16 6 16 15 16 6 6

0 6 16 16 6 15 16 6

0 16 16 6 16 6 15 6

0 12 12 12 6 6 6 27

Proposition 5.8 tells us that for any element in 〈ϕ〉, the Markov chain is

preserved under permutation of the rows and columns of according to the in-

duced permutation ϕ̃. As previously mentioned, the induced permutations

of the transpositions in S3 are (1 2)(5 6), and (2 3)(4 5), and (1 3)(4 6), and

it is easily verified that neither of these induced permutations preserve the

Markov chain (but the product of any two do), thus the stabilizer subgroup

is precisely C3.

To contrast this example, we will now consider a similar system, but using

C2 instead of C3. In particular, for the transposition ϕ = (1 2) and π = 012,

we get the update order distribution PC2 = {(012, 1/2), (021, 1/2)}. The

112

Markov chain of this StSDS is

[ParG
3, 23

,PC2] =
1

2
[ParG

3, 23

, 012] +
1

2
[ParG

3, 23

, 021]

=
1

54

27 0 0 0 0 0 0 0

0 3 6 10 0 0 4 4

0 0 3 6 6 12 0 0

0 0 0 3 0 6 10 8

0 10 0 4 5 2 6 0

0 6 12 0 0 5 2 2

0 0 6 0 12 0 5 4

0 8 0 4 4 2 0 9

+
1

54

27 0 0 0 0 0 0 0

0 3 0 6 6 0 12 0

0 6 3 10 0 4 0 4

0 0 0 3 0 10 6 8

0 0 10 4 5 6 2 0

0 6 0 0 12 5 0 4

0 12 6 0 0 2 5 2

0 0 8 4 4 0 2 9

=
1

54

54 0 0 0 0 0 0 0

0 6 6 16 6 0 16 4

0 6 6 16 6 16 0 4

0 0 0 6 0 16 16 16

0 10 10 4 10 8 8 0

0 12 12 0 12 10 2 6

0 12 12 0 12 2 10 6

0 8 8 8 8 2 2 18

The induced permutation of (1 2) is (1 2)(5 6), and this preserves the

Markov chain, as guaranteed by Proposition 5.8. However, the induced

permutations of the other two transpositions do not, nor do their products.

Together, this means that

C2 →֒ Stab[Par, G3, 2
3
,PC2] ∼= C2 .

Next, consider the update order distribution P ′
C3

= {(021, 1/3), (102, 1/3),

(210, 1/3)}. Intuitively, [Par, G3, 2
3
,P ′

C3
] should exhibit similar symmetries

to that of [Par, G3, 2
3
,PC3]. In fact, the Markov chains of these two StSDS are

transposes of each other, and this makes sense, because the dynamics are

113

equivalent, though are essentially done in reverse. Explicitly, the Markov

chain is

[Par, G3, 2
3
,P ′

C3
] =

1

3
[Par, G3, 2

3
, 021] +

1

3
[Par, G3, 2

3
, 102] +

1

3
[Par, G3, 2

3
, 210]

=
1

81

27 0 0 0 0 0 0 0

0 3 0 6 6 0 12 0

0 6 3 10 0 4 0 4

0 0 0 3 0 10 6 8

0 0 10 4 5 6 2 0

0 6 0 0 12 5 0 4

0 12 6 0 0 2 5 2

0 0 8 4 4 0 2 9

+
1

81

27 0 0 0 0 0 0 0

0 3 10 6 0 0 4 4

0 0 3 0 6 0 10 8

0 0 6 3 12 6 0 0

0 6 0 12 5 0 2 2

0 10 4 0 2 5 6 0

0 0 0 6 0 12 5 4

0 8 4 0 2 4 0 9

+
1

81

27 0 0 0 0 0 0 0

0 3 0 0 10 6 0 8

0 6 3 0 0 12 6 0

0 10 6 3 4 0 0 4

0 0 6 0 5 0 12 4

0 0 12 6 2 5 0 2

0 4 0 10 6 2 5 0

0 4 0 8 0 2 4 9

=
1

81

81 0 0 0 0 0 0 0

0 9 10 12 16 6 16 12

0 12 9 10 6 16 16 12

0 10 12 9 16 16 6 12

0 6 16 16 15 6 16 6

0 16 16 6 16 15 6 6

0 16 6 16 6 16 15 6

0 12 12 12 6 6 6 27

Notice, however, that none of the three individual components [Par, G3, 2
3
, π′]

for π′ ∈ PC3 are the transpose of any of the components [Par, G3, 2
3
, π], where

π ∈ PC3 .

114

Finally, consider the update order distribution generated by S3, the full

automorphism group of K3. We get

[Par, G3, 2
3
,PS3] =

1

2
[Par, G3, 2

3
,PC3] +

1

2
[Par, G3, 2

3
,P ′

C3
]

=
1

162

162 0 0 0 0 0 0 0

0 18 22 22 22 22 32 24

0 22 18 22 22 32 22 24

0 22 22 18 32 22 22 24

0 22 22 32 30 22 22 12

0 22 32 22 22 30 22 12

0 32 22 22 22 22 30 12

0 24 24 24 12 12 12 54

,

and as guaranteed by Proposition 5.8, the induced permutations (1 2)(5 6),

(2 3)(4 5), and (1 3)(4 6) all preserve the Markov chain, and thus

S3 →֒ Stab[Par, G3, 2
3
,PS3]

∼= S3 .

None of the results in this section should be too surprising, however, they

form a good starting point for the study of stochastic SDSs.

6. Conclusions and Future Research

One of the underlying themes throughout this dissertation, though it was

not explicitly stated, was the sensitivity of some aspect of the dynamics of

an SDS to changes in the update order. When studying large complex

systems it can be desirable to understand update order stability. One way

to study this is to see how adding or removing edges affects the stability,

or said differently, whether the dynamics are, in general, more stable over

sparse graphs or over dense graphs.

115

In Sections 2 and 3, the idea of update order stability was analyzed

by defining different notions of equivalence, which captured certain key

properties of the phase spaces of the SDS maps under variations of the

update order. We constructed neutral networks for functional and cycle

equivalence, and the number of connected components of these objects gave

an upper bound for the number of SDS maps up to equivalence obtainable

by changing the update order for a fixed choice of functions. In both cases,

adding edges to the dependency graph increases these upper bounds, and

one of these bounds is known to be sharp. One or both of these notions of

equivalence can be used to characterize the stability of an SDS with respect

to update order. For example, if Y is a connected tree on n-vertices, then

there are 2n−1 SDS maps of the form [NorY , π] for π ∈ SY . However, if

Y = Kn, then there are n! such maps. This can lead one to the conclusion

that in general, adding edges to the dependency graph of an SDS causes the

dynamics to become less stable with respect to changes in the update order.

One of the prevailing themes of Section 4 was word-independent SDSs.

This idea can be extended to a measure of update order stability. For a

fixed choice of functions FY , one can compute the number of states that are

periodic under the map [FY , π] for all π ∈ SY , and the number of states that

are periodic for [FY , π] for some π ∈ SY . The quotient of these two numbers

is a positive number not greater than than 1, and can be used as a measure

of update order stability. The most stable SDSs according to this measure

are the word-independent systems, because the sets of periodic points are

unchanged under variations to the update order. The observation that all

invertible SDS maps and all fixed point systems are word-independent, as

116

well as the suggested correlation between the (normalized) signature and

being word-independent, leads one to hypothesize that word-independence,

and this measure of update order stability, is more a property of the func-

tions rather than the dependency graph. A case could thus be made that

adding edges to the dependency graph of an SDS has little or no effect on

the stability of the dynamics with respect to changes in the update order.

We conclude our discussion of update order stability by stating a recent

theorem from [24]. In this paper, the authors consider SDSs induced by

threshold functions, which arise frequently in modeling epidemics [22] or

biological networks [21]. They discuss a function of an SDS which captures

a different aspect about update order stability. A vertex function f : Fd+1
2 →

F2 is a k-threshold function if f(x) = 1 if and only if at least k entries of x

are 1. It is clear that threshold functions are fixed-point systems, by virtue

of being one-way functions. The main question in [24] is to understand

how many different fixed points a state in Fn2 can reach under a threshold

SDS map by varying the update order. To do this the ω-limit set of a map

φ : Kn → Kn is defined to be the set of all periodic points z ∈ Kn such that

φm(y) = z for some m ≥ 0. For a given SDS (Y,FY , π) and state y ∈ Fn2 ,

the ω-limit set of the SDS map [FY , π] is denoted by ωπ(y). If P ⊂ SY is a

collection of simple update orders, then the ω-limit set of y with respect to

P is defined to be

ωP(y) =
⋃

π∈P

ωπ(y) .

If there are large periodic cycles in the phase space of the SDS, then the

size of ωP(y) is not too insightful. However, if [FY , π] contains only fixed

117

points, then ωP(y) is a direct measure of stability that describes how many

fixed points can be reached from y by varying the update order according

to P. For a set of functions FY , define

ω(FY) = max |{ωSY
(y) | y ∈ Kn}| ,

and this captures the maximum possible number of periodic points that

can be reached from any state by variation of the update order. Again, this

measure loses its value for non-fixed point systems. The following result is

proven in [24].

Theorem 6.1. Let fY be a sequence of 2-threshold vertex functions. If

Y = Starn then ω(FY) = 2n − n. If Y = Kn, then ω(FY) = n+ 1.

Additionally, this is extended to the random graph model Gn,p for various

values of p. The main result is that for sparse graphs, ω(FY) = Θ(2n) (with

sufficiently high probability), but for dense graphs, ω(FY) = Θ(n). Thus,

using this notion of update order stability, one might be led to conclude

that adding edges to the dependency graph of an SDS causes the dynamics

to become more stable with respect to changes in the update order.

The moral here is that one must be careful when making general state-

ments about update order stability, because there are numerous ways to

define it, and two proposed measures can be uncorrelated, or even inversely

correlated. In conclusion, we have seen three natural ways to characterize

update order stability of an SDS (Y,FY , π), namely by computing:

• the number of SDS maps [FY , π] up to functional (or cycle) equiva-

lence for π ∈ SY ,

118

• the percentage of states that are periodic for an SDS [FY , π] for some

π ∈ SY , that are additionally periodic for every π ∈ SY ,

• The maximum number of fixed points that can be reached from a

given state y under the map [FY , π] over all π ∈ SY .

Depending on which of these measures are studied, one can make a case

that the stability of the dynamics of an SDS is directly related, inversely

related, or completely unrelated, to the density of edges in the dependency

graph. We bring this up, because besides being interesting in its own right,

it should serve as a cautionary warning for someone trying to study and

characterize update order stability. These three notions have only been

studied independently. Perhaps there are ways to draw connections be-

tween them to paint a more complete picture. This could be the topic of

an excellent research project, and is an interesting thought on which to

conclude this dissertation.

119

Appendix A. Tables of word-independent Wolfram rules

Periodic points Wolfram rules

{0} 0, 8, 64, 32, 40, 96
{1} 235, 239, 249, 251, 253, 255
{0,1} 128, 136, 152, 160, 168, 184, 188, 192, 194

224, 226, 230, 234, 238, 248, 250, 252, 254

{No ‘11’, ‘000’} 5, 13, 69
{No ‘00’, ‘111’} 79, 93, 95
{No ‘11’, ‘000’} ∪ {1} 133, 141, 197
{No ‘00’, ‘111’} ∪ {0} 78, 92, 94

{No ‘11’, ‘010’} 72
{No ‘00’, ‘101’} 237

{No ‘11’, ‘101’} ∪ {1} 164, 172, 228
{No ‘00’, ‘010’} ∪ {0} 202, 216, 218

{No ‘111’, ‘000’, ‘1100’} 29
{No ‘111’, ‘000’, ‘0011’} 71
{No ‘111’, ‘000’, ‘1100’} ∪ {0} 28
{No ‘111’, ‘000’, ‘0011’} ∪ {1} 199
{No ‘111’, ‘000’, ‘0011’} ∪ {0} 70
{No ‘111’, ‘000’, ‘1100’} ∪ {1} 157

{No ‘111’, ‘000’} 77

{No ‘101’, ‘010’} 232

{No ‘11’} 1, 4, 9, 12, 65, 68
{No ‘00’} 111, 125, 127, 207, 221, 223
{No ‘11’} ∪ {1} 129, 132, 137, 140, 193, 196
{No ‘00’} ∪ {0} 110, 124, 126, 206, 220, 222

{No ‘101’} ∪ {0} 236
{No ‘010’} ∪ {1} 200

{No ‘111’} 73, 76
{No ‘000’} 109, 205

Fn2 51, 54, 57, 60, 99, 102, 105, 108
147, 150, 153, 156, 195, 198, 201, 204

Table 8. Periodic points of word-independent ACAs, in-
dexed by Wolfram rules

120

Rule tag inv refl i.r. flips sig mi,i+1 G Per

0 0000 255 0 255 4 −4 1 1 {0}
1 x000 127 1 127 5 −3 6 SL(n) or AL(n) Pn,7

105 xx-- 105 105 105 4 0 3 ? Fn2
126 -x11 129 126 129 4 2 6 SL(n) or AL(n) P̄n,7 ∪ {0}
128 0-00 254 128 254 3 −3 1 1 {0,1}
150 --xx 150 150 150 4 0 3 ? Fn2
232 01-- 232 232 232 2 0 1 1 Pn,6

4 -000 223 4 223 3 −3 1 1 Pn,7
5 1000 95 5 95 4 −2 1 1 Pn,1

32 0x00 251 32 251 5 −3 1 1 {0}
51 xxxx 51 51 51 8 0 2 Cn

2 Fn2
54 -xxx 147 54 147 6 0 12 An−1 Fn2
72 00-- 237 72 237 2 −2 1 1 Pn,2
73 x0-- 109 73 109 3 −1 6 ? Pn,9
76 -0-- 205 76 205 1 −1 1 1 Pn,9
77 10-- 77 77 77 2 0 1 1 Pn,5
94 -011 133 94 133 3 1 1 1 P̄n,1 ∪ {0}

108 -x-- 201 108 201 2 0 6 ? Fn2
132 --00 222 132 222 2 −2 1 1 Pn,7 ∪ {1}
160 0100 250 160 250 4 −2 1 1 {0,1}
164 -100 218 164 218 3 −1 1 1 Pn,3 ∪ {1}
200 0--- 236 200 236 1 −1 1 1 P̄n,8
204 ---- 204 204 204 0 0 1 1 Fn2

8 00-0 239 64 253 3 −3 1 1 {0}
9 x0-0 111 65 125 4 −2 6 SL(n) or AL(n) Pn,7

12 -0-0 207 68 221 2 −2 1 1 Pn,7
13 10-0 79 69 93 3 −1 1 1 Pn,1
28 -0-x 199 70 157 3 −1 2 Cn

2 Pn,4 ∪ {0}
29 10-x 71 71 29 4 0 2 Cn

2 Pn,4
40 0x-0 235 96 249 4 −2 1 1 {0}
57 xx-x 99 99 57 6 0 12 An Fn2
60 -x-x 195 102 153 4 0 4 GL(n, 2) Fn2
78 -01- 141 92 197 2 0 1 1 {0}

110 -x1- 137 124 193 3 1 6 SL(n) or AL(n) P̄n,7 ∪ {0}
136 0--0 238 192 252 2 −2 1 1 {0,1}
140 ---0 206 196 220 1 −1 1 1 Pn,7 ∪ {1}
152 0--x 230 194 188 3 −1 1 1 {0,1}
156 ---x 198 198 156 2 0 6 ? Fn2
168 01-0 234 224 248 3 −1 1 1 {0,1}
172 -1-0 202 228 216 2 0 1 1 Pn,3
184 01-x 226 226 184 4 0 1 1 {0,1}

Table 9. Summary of the 104 word-independent Wolfram
rules, up to equivalence, and grouped into three classes con-
taining the (i) symmetric rules, (ii) quasi-symmetric rules,
and (iii) remaining rules.

121

References

[1] C. Barrett, H. Hunt, M. Marathe, S. Ravi, D. Rosenkrantz, and R. Stearns. Pre-
decessor and permutation existence problems for sequential dynamical systems. In
Proc. of the Conference on Discrete Mathematics and Theoretical Computer Science,
pages 69–80, 2003.

[2] C. Barrett, H. H. Hunt, M. V. Marathe, S. S. Ravi, D. Rosenkrantz, R. Stearns,
and P. Tosic. Gardens of eden and fixed point in sequential dynamical systems. In
Discrete Models: Combinatorics, Computation and Geometry, pages 95–110, 2001.

[3] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz,
and R. E. Stearns. Computational aspects of sequential dynamical systems: Design
problems. 2000. in preparation.

[4] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and
R. E. Stearns. Computational aspects of sequential dynamical systems I: Phase
space properties. 2000. in preparation.

[5] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and
R. E. Stearns. On some special classes of sequential dynamical systems. Annals of

Combinatorics, 7:381–408, 2003.
[6] C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of simulation

II: Sequential dynamical systems. Applied Mathematics and Computation, 107(2-
3):121–136, 2000.

[7] C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of simulation
III: Equivalence of SDS. Applied Mathematics and Computation, 122:325–340, 2001.

[8] C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of simulation
IV: Fixed points, invertibility and equivalence. Applied Mathematics and Computa-

tion, 134:153–172, 2003.
[9] C. L. Barrett and C. M. Reidys. Elements of a theory of simulation I: Sequential

CA over random graphs. Applied Mathematics and Computation, 98(2–3):241–259,
1999.

[10] A. Björner and F. Brenti. Combinatorics of Coxeter Groups. Springer-Verlag, New
York, 2005.

[11] A. Björner, L. Lovász, and P. Shor. Chip-firing games on graphs. European Journal

of Combinatorics, 12:283–291, 1991.
[12] B. Chen. Orientations, lattice polytopes, and group arrangements I, chromatic and

tension polynomials of graphs. Preprint. June 2007. arXiv:0706.3273.
[13] F. D. J. Dunstan. Matroids and submodular functions. The Quarterly Journal of

Mathematics, 27(3):339–348, 1976.
[14] H. Eriksson and K. Eriksson. Private communication, 2007.
[15] K. Eriksson. Node firing games on graphs. Contemporary Mathematics, 178:117–127,

1994.
[16] M. Gardner. Mathematical games. The fantastic combinations of John Conway’s

new solitaire game “life”. Scientific American, 223:120–123, 1970.
[17] E. Gioan. Enumerating degree sequences in digraphs and a cycle-cocycle reversing

system. European Journal of Combinatorics, 28:1351–1366, May 2007.
[18] A. Å. Hansson, H. S. Mortveit, and C. M. Reidys. On asynchronous cellular au-

tomata. Advances in Complex Systems, 8(4):521–538, December 2005.
[19] V. E. Hoggatt. Fibonacci and Lucas Numbers. Houghton Mifflin, Boston, MA, 1969.

122

[20] J. E. Humphreys. Reflection Groups and Coxeter Groups. Cambridge University
Press, Cambridge, UK, 1990.

[21] U. Karaoz, T. M. Murali, S. Letovsky, Y. Zheng, C. Ding, C. R. Cantor, and
S. Kasif. Whole-genome annotation by using evidence integration in functional-
linkage networks. Proceedings of the National Academy of Sciences, 101(9):2888–
2893, 2004.

[22] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory
of epidemics. Proceedings of the Royal Society of London A, 115:700–721, 1927.

[23] M. Kleiner and A. Pelley. Admissible sequences, preprojective representations of
quivers, and reduced words in the Weil group of a Kac-Moody algebra. International

Mathematical Research Notices, 2007, May 2007.
[24] V. S. A. Kumar, M. Macauley, and H. S. Mortveit. Update order instability in graph

dynamical systems. 2007. In progress.
[25] R. Laubenbacher and B. Paraigis. Equivalence relations on finite dynamical systems.

Adv. Appl. Math., 26:237–251, 2001.
[26] C. M. López. Chip firing and the Tutte polynomial. Annals of Combinatorics, 1:253–

259, 1997.
[27] R. Marsh, M. Reineke, and A. Zelevinsky. Generalized associahedra via quiver rep-

resentations. Transactions of the American Mathematical Society, 355:4171–4186,
2003.

[28] O. Martin, A. Odlyzko, and S. Wolfram. Algebraic properties of cellular automata.
Commun. Math. Phys., 93:219–258, 1984.

[29] H. S. Mortveit and C. M. Reidys. Discrete, sequential dynamical systems. Discrete

Mathematics, 226:281–295, 2001.
[30] H. S. Mortveit and C. M. Reidys. An Introduction to Sequential Dynamical Systems.

Universitext. Springer Verlag, 2007.
[31] I. Novik, A. Postnikov, and B. Sturmfels. Syzygies of oriented matroids. Duke Math-

ematical Journal, 111:287–317, 2002.
[32] G. M. B. Oliveira, P. P. de Oliveira, and N. Omar. Definition and application of

a five-parameter characterization of one-dimensional cellular automata rule space.
Artificial Life, 7:277–301, 2001.

[33] P. Orlik and H. Terao. Arrangements of Hyperplanes. A Series of Comprehensive
Studies in Mathematics. Springer-Verlag, 1992.

[34] C. M. Reidys. Acyclic orientations of random graphs. Advances in Applied Mathe-

matics, 21(2):181–192, 1998.
[35] C. M. Reidys. Sequential dynamical systems over words. Annals of Combinatorics,

10(4):481–498, 2006.
[36] J.-Y. Shi. The enumeration of Coxeter elements. Journal of Algebraic Combina-

torics, 6:161–171, 1997.
[37] J.-Y. Shi. Conjugacy relation on Coxeter elements. Advances in Mathematics, 161:1–

19, 2001.
[38] N. J. A. Sloane. The on-line encyclopedia of integer sequences. published electroni-

cally at http://www.research.att.com/˜njas/sequences/, 2006.
[39] D. E. Speyer. Powers of Coxeter elements in infinite groups are reduced. Preprint.

October 2007. arXiv:0710.3188.
[40] J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press,

1966. Edited and completed by Arthur W. Burks.

123

[41] A. J. Weir. Sylow p-subgroups of the general linear group over finite fields of char-
acteristic p. Proceedings of the American Mathematical Society, 6(3):454–464, June
1955.

[42] S. Wolfram. Statistical mechanics of cellular automata. Reviews of Modern Physics,
55:601–644, 1983.

[43] S. Wolfram. Universality and complexity in cellular automata. Physica D, 10:1–35,
1984.

[44] S. Wolfram. Theory and Applications of Cellular Automata, volume 1 of Advanced

Series on Complex Systems. World Scientific Publishing Company, 1986.
[45] S. Wolfram. A New Kind of Science. Wolfram Media, 2002.
[46] G. M. Ziegler. Lecture on Polytopes, volume 152 of Graduate Texts in Mathematics.

Springer-Verlag, New York, 1995.
[47] K. Zuse. Rechnender Raum. Friedrich Vieweg & Sohn, Braunschweig, 1969.

124

