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Sequential dynamical systems

I A sequential dynamical system (SDS) is a triple consisting of:

A graph Y with vertex set v[Y ] = {1, 2, . . . , n}.

For each vertex i a state yi ∈ K (e.g. F2 = {0, 1}) and a local function
Fi : Kn −→ K n

Fi (y = (y1, y2, . . . , yn)) = (y1, . . . , yi−1, fi(y[i ])
| {z }

vertex function

, yi+1, . . . , yn) .

A ordering π = π1π2 · · ·πn ∈ SY of the vertex set.

I The SDS map generated by the triple (Y , (Fi )
n
1 , π) is

[FY , π] = Fπn ◦ Fπn−1 ◦ · · · ◦ Fπ1 .
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I Question: What does it mean for two SDSs to be “equivalent”?

Definition
Two SDSs are functionally equivalent if their SDS maps are identical as functions
Kn −→ K n.

Definition
Two finite dynamical systems φ, ψ : K n −→ K n are dynamically equivalent if there is a
bijection h : K n −→ K n such that

ψ ◦ h = h ◦ φ .

(i.e., phase spaces are isomorphic).

Definition
Two finite dynamical systems φ, ψ : K n → K n are cycle equivalent if there exists a
bijection h : Per(φ) −→ Per(ψ) such that

ψ|Per(ψ) ◦ h = h ◦ φ|Per(φ) .

(i.e., phase spaces are isomorphic when restricted to the periodic points).



Sequential Dynamical Systems
Coxeter Groups

Summary
References

Equivalence of dynamics
Equivalence on acyclic orientations
Enumeration of equivalence classes

Example. Define the function nork : F
k
2 −→ F2 by nork(x) =

kY

i=1

(1 + xi).

I [NorCirc4
, π] for given update sequences:
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We will establish later that these are the only phase spaces up to isomorphism obtainable by
varying the update sequence.
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Questions on Equivalence of SDSs

I What dynamical properties are preserved as the update sequence changes?

I How many SDS maps up to equivalence are obtainable by varying the update sequence?

I Can we characterize equivalence combinatorially, through properties of the base graph?

Key observation: We can associate an update sequence π ∈ SY with an acyclic orienta-
tion, Oπ

Y ∈ Acyc(Y ), by a well-defined map

fY : SY −→ Acyc(Y ) , fY (π) = OπY ,

where π is a linear extension of Oπ
Y .

Explicitly, if π = π1π2 · · ·πn then {i , j} ∈ e[Y ] is oriented (i , j) iff i appears before j in
π.

I For any π, σ ∈ SY , define π ∼α σ iff fY (π) = fY (σ). This is an equivalence relation
on SY .
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Equivalence on acyclic orientations

I For O,O′ ∈ Acyc(Y ) define O ∼ᾱ O′ if O′ = γ(O) for some γ ∈ Aut(Y ).

A cyclic 1-shift (left) of a linear extension of OY corresponds to converting a source of
OY into a sink.

I This source-to-sink operation (or a “click”) puts an equivalence relation on Acyc(Y ),
denoted ∼κ.

Figure: Source-to-sink operations

I Aut(Y )-actions, with source-to-sink operations, together yield a coarser equivalence
relation ∼κ̄.
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Equivalence on update sequences

Let SY denote the set of permutation update sequences of v[Y ].

π ∼α σ ⇐⇒ Oπ
Y = OσY .

π ∼ᾱ σ ⇐⇒ Oπ
Y ∼ᾱ OσY (related by γ ∈ Aut(Y )).

π ∼κ σ ⇐⇒ Oπ
Y ∼κ OσY (related by source-to-sink moves).

π ∼κ̄ σ ⇐⇒ Oπ
Y ∼κ̄ OσY (related by γ ∈ Aut(Y ) & source-to-sink moves).

Theorem
Let FY be a sequence of Aut(Y )-invariant functions.

If π ∼α σ, then [FY , π] and [FY , σ] are functionally equivalent.

If π ∼ᾱ σ, then [FY , π] and [FY , σ] are dynamically equivalent.

If π ∼κ σ, then [FY , π] and [FY , σ] are cycle equivalent.

If π ∼κ̄ σ, then [FY , π] and [FY , σ] are cycle equivalent.
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Enumeration problems

α(Y ) := Acyc(Y ) = TY (2, 0) satisfies

α(Y ) = α(Y /e) + α(Y \ e) for any edge e

ᾱ(Y ) := Acyc(Y )/∼ᾱ =
1

Aut(Y )

X

γ∈Aut(Y )

α(〈γ〉 \ Y )

κ(Y ) := Acyc(Y )/∼κ= TY (1, 0) satisfies

κ(Y ) = κ(Y /e) + κ(Y \ e) for any cycle edge e

κ̄(Y ) := Acyc(Y )/∼κ̄ =
1

Aut(Y )

X

γ∈Aut(Y )

|Fix(γ)|

But what is |Fix(γ)| ???
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An example

Let Q3
2 be the binary 3-cube. A tedious calculation gives α(Y ) = 1862.

κ

 !

= κ

 !

+ κ

 !

= κ

 !

+ 2κ

 !

+ κ

 !

= κ

 !

+ 2κ

 !

+ 2κ

 !

+ κ

 !

+ κ

 !

= κ

 !

+ 4κ

 !

+ 2κ

 !

+ κ

 !

+ κ

 !

= 27 + 64 + 16 + 12 + 14 = 133.

I In summary, we have:

α(Q3
2 ) = 1862 , ᾱ(Q3

2 ) = 54 , κ(Q3
2 ) = 133 , δ(Q3

2 ) = 67 , κ̄(Q3
2 ) = δ̄(Q3

2 ) = 8 .

I If Y = Q3
2 , then for a fixed choice of functions FY , there are at most 8 possible cycle

structures of the SDS map [FY , π], up to isomorphism.
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κ(Y ) for some special graph classes

Proposition ([6])

For v ∈ v[Y ], let |Acycv (Y )| be the number of acyclic orientations of Y where v is the
unique source. There is a bijection

φv : Acycv (Y ) −→ Acyc(Y )/∼κ .

Corollary

For any vertex v of Y the set Acycv (Y ) is a transversal of Acyc(Y )/∼κ.

I If Y is a tree, then κ(Y ) = 1.

I If Y is an n-cycle, then κ(Y ) = n − 1.

I If Y ⊕ v is the vertex join of Y , then κ(Y ⊕ v) = α(Y ).

I κ(Kn) = (n − 1)!.
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The ν-invariant

Let P = v1v2 · · · vk be a path in Y . Define νP(OY ) to be the number of edges oriented
(vi , vi+1), minus the number of edges oriented (vi+1, vi).

Easy fact: If P is a cycle, then νP(OY ) is invariant under clicks.

Let Y = Circn, and let P traverse Y once. The possible values for νP(Circn) are
±(n − 2),±(n − 4),±(n − 6), . . . . Therefore, κ(Circn) ≥ n − 1.

By the recurrence κ(Y ) = κ(Y /e) = κ(Y \ e), and with base case κ(Tree) = 1, we get
κP(Circn) = n − 1.

I Therefore, ν is a complete invariant of Acyc(Circn)/∼κ, i.e., if Y = Circn,

νP(OY ) = νP(O′
Y ) ⇐⇒ OY ∼κ O′

Y .
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The ν-invariant (cont.)

+

PSfrag replacements

ν = 4 ν = 2 ν = 0 ν = −2 ν = −4

Figure: A transversal for Acyc(Circ6)/∼κ.

In fact, taken over all cycles, ν is a complete invariant of Acyc(Y )/∼κ:

Theorem (M–, Mortveit [7])

If νC (OY ) = νC (O′
Y ) for every cycle C in Y , then OY ∼κ O′

Y .
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Coxeter groups

Definition
A Coxeter group is a group with presentation

〈s1, . . . , sn | sis
mij

j 〉

where mij > 1 iff i 6= j .

It follows easily that |si | = 2, and |sisj | = |sj si |.

Think of a Coxeter group as a generalized reflection group (more on this later).

Recall, for any non-zero vectors v,w ∈ R
n, the reflection of v across the hyperplane

orthogonal to w is

v − 2
〈v,w〉

〈w,w〉
w .



Sequential Dynamical Systems
Coxeter Groups

Summary
References

Conjugacy of Coxeter elements
Spectral classes

Coxeter graphs and acyclic orientations

A Coxeter system is a triple (W ,S ,Γ) where W is a Coxeter group, S is the set of
reflections that generate W , and Γ is the Coxeter graph:

v[Γ] = S , e[Γ] = {{si , sj} | mij ≥ 3} .

Additionally, each edge {si , sj} is labeled with mij (usually the label is omitted for
mij = 3 because these are the most common).

Note: Edges correspond to non-commuting pairs of reflections.

I A Coxeter element is the product of the generators in any order.

I There is a bijection between the set of Coxeter elements C := C(W , S ,Γ) and Acyc(Γ)
(see [11]).
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Conjugacy of Coxeter elements

I Conjugating a Coxeter element by a simple reflection cyclically shifts the word, and
corresponds to a source-to-sink operation (or “click”):

sπ(1)(sπ(1)sπ(2) · · · sπ(n))sπ(1) = sπ(2)sπ(3) · · · sπ(n)sπ1 .

Therefore, the equivalence relation ∼κ carries over to C(W ,S ,Γ).

I Clearly, if c ∼κ c′, then c and c′ are conjugate in W .

I Therefore, κ(Γ) is an upper bound on the number of conjugacy classes of Coxeter
elements [6].

Open question: Is this bound sharp, i.e., does the converse of the statement above hold?
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Conjugacy in simply-laced Coxeter groups

A Coxeter system is simply-laced if mij ≤ 3.

Theorem (H. Eriksson, 1994 [2])

Let (W ,S ,Γ) be a simply-laced Coxeter system where Γ = Circn (i.e., W = Ãn−1 is the
affine Weyl group). Then two Coxeter elements c, c ′ ∈ C(W ,S ,Γ) are conjugate if and
only if c ∼κ c′ .

Theorem (J.-Y. Shi, 2001 [12])

Let (W ,S ,Γ) be a simply-laced Coxeter system where Γ is unicyclic. Then two Coxeter
elements c, c′ ∈ C(W ,S , Γ) are conjugate if and only if c ∼κ c′.

Theorem (M–, Mortveit, 2008 [7])

Let (W ,S ,Γ) be a simply-laced Coxeter system. Then two Coxeter elements
c, c′ ∈ C(W , S ,Γ) are conjugate if and only if c ∼κ c′.
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Natural reflection representation

Define ai,j = cos π
mij

.

The natural reflection representation of W is defined on the generators s ∈ S by

si 7−→ In − 2Ei,i +
X

j : mij≥3

ai,jEi,j .

Example.

si
�

//

2

6
6
6
6
6
6
6
6
6
6
6
4

1

. . .

1
· · · ai−1,i −1 ai,i+i · · ·

1

.. .

1

3

7
7
7
7
7
7
7
7
7
7
7
5



Sequential Dynamical Systems
Coxeter Groups

Summary
References

Conjugacy of Coxeter elements
Spectral classes

Spectral classes

Identify w ∈ W with the corresponding linear transformation in the natural reflection
representation.

If w and w ′ are conjugate in W , then they have the same spectral class.

Question [12]: Given a Coxeter system (W ,S , Γ), how many spectral classes do the
Coxeter elements in C(W ,S ,Γ) fall into?

Two κ-classes that have respective acyclic orientations OΓ and O′
Γ such that

ϕ : OΓ 7−→ O′
Γ for some ϕ ∈ Aut(Γ) also have the same spectral class.

I Therefore, κ̄(Γ) is an upper bound for the number of spectal classes.



Sequential Dynamical Systems
Coxeter Groups

Summary
References

Conjugacy of Coxeter elements
Spectral classes

An example

Let Γ = K2,3, with vertex set {1, 3, 5} t {2, 4}.

α(Γ) = 46, κ(Γ) = 7, and κ̄(Γ) = 2. There are 2 spectral classes (See Shi, 2001 [12]):

{12345, 23451, 52341, 51234, 45123, 34512}

{12543, 25431, 32541, 31254, 43125, 54312}

{32145, 35214, 52143, 21435, 14352, 43521}

{14523, 45231, 34512, 31452, 23145, 52314}

{14325, 43251, 54321, 51432, 25143, 32514}

{34124, 41235, 54123, 35412, 23541, 12354}

{24351, 21354, 13524, 41352, 52431, 15243, 12435, 31245, 32451, 35241}

Elements in the first six classes have characteristic polynomial
f (x) = x5 − 3x4 − 6x3 − 6x2 − 3x + 1.

Elements in the last class have characteristic polynomial f (x) = x 5−x4−8x3−8x2−x+1.
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An example (cont.)

Figure: The update graph U(K2,3): Connected components are in 1–1 correspondence with
Acyc(K2,3).

Consider the mapping (sπi )i
φ
7−→ (πi mod 2)i .

Non-adjacency in Γ coincides with parity, that is, if c = c′, then φ(c) = φ(c′).

12 size-1 components: 10101

24 size-2 components: 01011, 11010, 01101, 10110.

6 size-4 components: 10011, 11001.

2 size-6 components: 01110

2 size-12 components: 11100, 00111.
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An example (cont.)

15243

13245

35241

12435

32415

52413

41352

13524 24135

21354

45123 3451251234

15432 2154332154

14325

54321

52341

12345

43215

23451

×1 ×3

Figure: The graph C(K2,3) contains the component on the left, and three isomorphic copies of the
structure on the right (but with different vertex labels).

Component at left: φ(π) ∈ {01101, 11010, 10101, 01011, 10110}.

Component at right: φ(π) ∈ {11100, 11001, 10011, 00111, 01110}.
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Quiver representations [8]

A quiver is a finite directed graph (loops and multiple edges allowed).

A quiver Q with a field K gives rise to a path algebra KQ.

There is a natural correspondence (categorial equivalence) between KQ-modules, and
K -representations of Q.

I A path algebra is finite-dimensional if and only if the quiver is acyclic. Modules over
finite-dimensional path algebras form a reflective subcategory.

I A reflection functor maps representations of a quiver Q to representations of a quiver
Q′, where Q′ differs from Q by a source-to-sink operation.

I A composition of n = |v[Q]| distinct reflection functors is not the identity, but a
Coxeter functor.
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Node-firing games [3]

I In the chip-firing game, each vertex of a graph is given some number (possibly zero)
of chips.

If vertex i has degree di , and at least di chips, then a legal move (or a “click”) is a
transfer of one chip to each neighbor.

A legal move is in a sense a generalization of a source-to-sink operation.

I In the numbers game, each vertex of a graph is assigned an integer value, and the
edges are weighted according to the mij relations of the Coxeter group.

The legal sequences of moves in the numbers game are in 1–1 correspondence with the
reduced words of the Coxeter group with that Coxeter graph.
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Summary of SDS / Coxeter theory connections

Coxeter groups Sequential dynamical systems

Base
graph

←→ Coxeter graph Γ Dependency graph Y

Acyc(Γ) ←→ Coxeter elements SDS maps
c = sπ(1)sπ(2) · · · sπ(n) [FY , π] = Fπ(n) ◦ · · · ◦ Fπ(2) ◦ Fπ(1).

Clicks ←→ Conjugacy classes Cycle-equivalence classes
of Coxeter elements of SDS maps

Aut(Γ) ←→ Spectral classes Cycle-equivalence classes
orbits of Coxeter elements of SDS maps (finer)
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Connections to quiver representations and chip firing

Quiver representations Chip-firing game

Base
graph

←→ Undirected quiver Q̄ Underlying graph Γ

Acyc(Γ) ←→ Quiver Q of a Configurations, or states
finite-dimensional path-algebra KQ of the game

Clicks ←→ Reflection functors Legal moves

Aut(Γ) ←→ Vector space isomorphisms Equivalent states
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Summary of future research

Combinatorics

Is there a nice closed-form or easily computable solution to κ̄(Γ)?

Sequential dynamical systems

Are κ̄(Y ) and δ̄(Y ) sharp upper bounds for the number of SDS maps up to cycle
equivalence?

Coxeter groups

Prove that two Coxeter elements are conjugate iff they are κ-equivalent, for a
non-simply-laced Coxeter system.

Is κ̄(Γ) a sharp upper bound for the number of spectral classes of Coxeter elements
of (W ,S , Γ)? If not, for which graphs does it fail, and by how much?



Sequential Dynamical Systems
Coxeter Groups

Summary
References

References
[1] C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of simulation III:

Equivalence of SDS. Appl. Math. and Comput. 122, 2001:325–340.

[2] H. Eriksson. Computational and combinatorial aspects of Coxeter groups. Ph.D. thesis, KTH,
Stockholm, 1994.

[3] K. Eriksson. Node firing games on graphs. Contemp. Math. 178, 1994:117–127.

[4] M. Macauley, H. S. Mortveit. Cycle equivalence of graph dynamical systems. Nonlinearity. To
appear, 2009. arXiv:0802.4412.

[5] M. Macauley, H. S. Mortveit. Equivalences on acyclic orientations. Preprint, 2008.
arXiv:0709.0291.

[6] M. Macauley, H. S. Mortveit. On enumeration of conjugacy classes of Coxeter elements. Proc.
AMS. 136, 2008:4157–4165. arXiv:0711.1140.

[7] M. Macauley, H. S. Mortveit. A solution to the conjugacy problem for Coxeter elements in

simply laced Coxeter groups. Submitted to Adv. Math., 2008.

[8] R. Marsh, M. Reineke and A. Zelevinsky. Generalized associahedra via quiver representations.
Trans. AMS 355, 2003:4171–4186.

[9] H. S. Mortveit, C. M. Reidys. An introduction to sequential dynamical systems. Springer Verlag,
2007.

[10] W. T. Tutte. A contribution to the theory of chromatic polynomials. Canad. J. Math. 6,
1954:80–91.

[11] J.-Y. Shi. The enumeration of Coxeter elements. J. Comb. Algebra 6, 1997:161-171.

[12] J.-Y. Shi. Conjugacy relation on Coxeter elements. Adv. Math., 161:1–19, 2001.


	Sequential Dynamical Systems
	Equivalence of dynamics
	Equivalence on acyclic orientations
	Enumeration of equivalence classes

	Coxeter Groups
	Conjugacy of Coxeter elements
	Spectral classes

	Summary
	Connections to other areas of mathematics
	Future research

	References

