Combinatorics of Discrete Dynamical Systems and Coxeter Theory

Matthew Macauley

Department of Mathematical Sciences Clemson University Clemson, South Carolina, USA 29634

Special session: Combinatorics and Discrete Dynamical Systems AMS-SMS Joint Meeting Fudan University Shanghai, China December, 2008

Outline

- 1 Sequential Dynamical Systems
 - Equivalence of dynamics
 - Equivalence on acyclic orientations
 - Enumeration of equivalence classes
- 2 Coxeter Groups
 - Conjugacy of Coxeter elements
 - Spectral classes
- 3 Summary
 - Connections to other areas of mathematics
 - Future research

Equivalence of dynamics Equivalence on acyclic orientations Enumeration of equivalence classes

Sequential dynamical systems

► A sequential dynamical system (SDS) is a triple consisting of:

- A graph Y with vertex set $v[Y] = \{1, 2, \dots, n\}$.
- For each vertex *i* a state $y_i \in K$ (e.g. $\mathbb{F}_2 = \{0, 1\}$) and a local function $F_i : K^n \longrightarrow K^n$

$$F_i(\mathbf{y} = (y_1, y_2, \dots, y_n)) = (y_1, \dots, y_{i-1}, \underbrace{f_i(\mathbf{y}[i])}_{\text{vertex function}}, y_{i+1}, \dots, y_n) .$$

■ A ordering $\pi = \pi_1 \pi_2 \cdots \pi_n \in S_Y$ of the vertex set.

▶ The SDS map generated by the triple $(Y, (F_i)_1^n, \pi)$ is

$$[\mathfrak{F}_Y,\pi]=F_{\pi_n}\circ F_{\pi_{n-1}}\circ\cdots\circ F_{\pi_1}.$$

▶ Question: What does it mean for two SDSs to be "equivalent"?

Definition

Two SDSs are *functionally equivalent* if their SDS maps are identical as functions $K^n \longrightarrow K^n$.

Definition

Two finite dynamical systems $\phi, \psi: K^n \longrightarrow K^n$ are *dynamically equivalent* if there is a bijection $h: K^n \longrightarrow K^n$ such that

$$\psi \circ h = h \circ \phi \; .$$

(i.e., phase spaces are isomorphic).

Definition

Two finite dynamical systems $\phi, \psi \colon K^n \to K^n$ are *cycle equivalent* if there exists a bijection $h \colon \text{Per}(\phi) \longrightarrow \text{Per}(\psi)$ such that

$$\psi|_{\mathsf{Per}(\psi)} \circ h = h \circ \phi|_{\mathsf{Per}(\phi)}$$
.

(i.e., phase spaces are isomorphic when restricted to the periodic points).

Sequential Dynamical Systems Coxeter Groups Summary References Equivalence on acyclic orientations Enumeration of equivalence classe

Example. Define the function
$$\operatorname{nor}_k \colon \mathbb{F}_2^k \longrightarrow \mathbb{F}_2$$
 by $\operatorname{nor}_k(\mathbf{x}) = \prod_{i=1}^{\kappa} (1 + x_i)$.

We will establish later that these are the *only* phase spaces up to isomorphism obtainable by varying the update sequence.

Equivalence of dynamics Equivalence on acyclic orientations Enumeration of equivalence classes

Questions on Equivalence of SDSs

- ▶ What dynamical properties are preserved as the update sequence changes?
- ▶ How many SDS maps up to equivalence are obtainable by varying the update sequence?
- ► Can we characterize equivalence combinatorially, through properties of the base graph?

Key observation: We can associate an update sequence $\pi \in S_Y$ with an acyclic orientation, $O_Y^{\pi} \in Acyc(Y)$, by a well-defined map

$$f_Y : S_Y \longrightarrow \operatorname{Acyc}(Y) , \qquad f_Y(\pi) = O_Y^{\pi} ,$$

where π is a linear extension of O_V^{π} .

Explicitly, if $\pi = \pi_1 \pi_2 \cdots \pi_n$ then $\{i, j\} \in e[Y]$ is oriented (i, j) iff i appears before j in π .

▶ For any $\pi, \sigma \in S_Y$, define $\pi \sim_{\alpha} \sigma$ iff $f_Y(\pi) = f_Y(\sigma)$. This is an equivalence relation on S_Y .

Equivalence on acyclic orientations

▶ For $O, O' \in Acyc(Y)$ define $O \sim_{\bar{\alpha}} O'$ if $O' = \gamma(O)$ for some $\gamma \in Aut(Y)$.

A cyclic 1-shift (left) of a linear extension of O_Y corresponds to converting a source of O_Y into a sink.

► This *source-to-sink* operation (or a "click") puts an equivalence relation on Acyc(Y), denoted \sim_{κ} .

Figure: Source-to-sink operations

► Aut(Y)-actions, with source-to-sink operations, together yield a coarser equivalence relation $\sim_{\bar{\kappa}}$.

Equivalence of dynamics Equivalence on acyclic orientations Enumeration of equivalence classes

Equivalence on update sequences

Let S_Y denote the set of permutation update sequences of v[Y].

Theorem

Let \mathfrak{F}_Y be a sequence of Aut(Y)-invariant functions.

- If $\pi \sim_{\alpha} \sigma$, then $[\mathfrak{F}_{Y}, \pi]$ and $[\mathfrak{F}_{Y}, \sigma]$ are functionally equivalent.
- If $\pi \sim_{\bar{\alpha}} \sigma$, then $[\mathfrak{F}_{Y}, \pi]$ and $[\mathfrak{F}_{Y}, \sigma]$ are dynamically equivalent.
- If $\pi \sim_{\kappa} \sigma$, then $[\mathfrak{F}_{Y}, \pi]$ and $[\mathfrak{F}_{Y}, \sigma]$ are cycle equivalent.
- If $\pi \sim_{\bar{\kappa}} \sigma$, then $[\mathfrak{F}_Y, \pi]$ and $[\mathfrak{F}_Y, \sigma]$ are cycle equivalent.

Enumeration problems

•
$$\alpha(Y) := \operatorname{Acyc}(Y) = T_Y(2,0)$$
 satisfies

$$\alpha(Y) = \alpha(Y/e) + \alpha(Y \setminus e)$$
 for any edge e

$$\bullet \quad \bar{\alpha}(Y) := \mathsf{Acyc}(Y) / \sim_{\bar{\alpha}} = \frac{1}{\mathsf{Aut}(Y)} \sum_{\gamma \in \mathsf{Aut}(Y)} \alpha(\langle \gamma \rangle \setminus Y)$$

•
$$\kappa(Y) := \operatorname{Acyc}(Y)/\sim_{\kappa} = T_Y(1, 0)$$
 satisfies
 $\kappa(Y) = \kappa(Y/e) + \kappa(Y \setminus e)$ for any *cycle* edge *e*

$$\bullet \quad \bar{\kappa}(Y) := \mathsf{Acyc}(Y) / \sim_{\bar{\kappa}} = \frac{1}{\mathsf{Aut}(Y)} \sum_{\gamma \in \mathsf{Aut}(Y)} |\mathsf{Fix}(\gamma)|$$

But what is $|Fix(\gamma)|$???

An example

Let Q_2^3 be the binary 3-cube. A tedious calculation gives $\alpha(Y) = 1862$.

$$\kappa\left(\bigodot\right) = \kappa\left(\clubsuit\right) + \kappa\left(\clubsuit\right) = \kappa\left(\clubsuit\right) + 2\kappa\left(\clubsuit\right) + \kappa\left(\clubsuit\right)$$
$$= \kappa\left(\clubsuit\right) + 2\kappa\left(\clubsuit\right) + 2\kappa\left(\clubsuit\right) + \kappa\left(\clubsuit\right) + \kappa\left(\clubsuit\right)$$
$$= \kappa\left(\clubsuit\right) + 4\kappa\left(\clubsuit\right) + 2\kappa\left(\clubsuit\right) + \kappa\left(\clubsuit\right) + \kappa\left(\clubsuit\right)$$
$$= 27 + 64 + 16 + 12 + 14 = 133.$$

▶ In summary, we have:

 $\alpha(Q_2^3) = 1862\,, \quad \bar{\alpha}(Q_2^3) = 54\,, \quad \kappa(Q_2^3) = 133\,, \quad \delta(Q_2^3) = 67\,, \quad \bar{\kappa}(Q_2^3) = \bar{\delta}(Q_2^3) = 8\,.$

▶ If $Y = Q_2^3$, then for a fixed choice of functions \mathfrak{F}_Y , there *are at most* 8 possible cycle structures of the SDS map $[\mathfrak{F}_Y, \pi]$, up to isomorphism.

Equivalence of dynamics Equivalence on acyclic orientations Enumeration of equivalence classes

$\kappa(Y)$ for some special graph classes

Proposition ([6])

For $v \in v[Y]$, let $|Acyc_v(Y)|$ be the number of acyclic orientations of Y where v is the unique source. There is a bijection

$$\phi_{\mathsf{v}} \colon \operatorname{\mathsf{Acyc}}_{\mathsf{v}}(\mathsf{Y}) \longrightarrow \operatorname{\mathsf{Acyc}}(\mathsf{Y})/\sim_{\kappa} .$$

Corollary

For any vertex v of Y the set $Acyc_v(Y)$ is a transversal of $Acyc(Y)/\sim_{\kappa}$.

- ▶ If Y is a tree, then $\kappa(Y) = 1$.
- ▶ If Y is an *n*-cycle, then $\kappa(Y) = n 1$.
- ▶ If $Y \oplus v$ is the vertex join of Y, then $\kappa(Y \oplus v) = \alpha(Y)$.

▶
$$\kappa(K_n) = (n-1)!$$
.

The ν -invariant

Let $P = v_1 v_2 \cdots v_k$ be a path in Y. Define $\nu_P(O_Y)$ to be the number of edges oriented (v_i, v_{i+1}) , minus the number of edges oriented (v_{i+1}, v_i) .

Easy fact: If *P* is a cycle, then $\nu_P(O_Y)$ is invariant under clicks.

Let $Y = \text{Circ}_n$, and let P traverse Y once. The possible values for $\nu_P(\text{Circ}_n)$ are $\pm (n-2), \pm (n-4), \pm (n-6), \ldots$. Therefore, $\kappa(\text{Circ}_n) \ge n-1$.

By the recurrence $\kappa(Y) = \kappa(Y/e) = \kappa(Y \setminus e)$, and with base case $\kappa(\text{Tree}) = 1$, we get $\kappa_P(\text{Circ}_n) = n - 1$.

▶ Therefore, ν is a complete invariant of Acyc(Circ_n)/ \sim_{κ} , i.e., if Y = Circ_n,

$$u_P(O_Y) = \nu_P(O'_Y) \quad \Longleftrightarrow \quad O_Y \sim_\kappa O'_Y .$$

Figure: A transversal for $Acyc(Circ_6)/\sim_{\kappa}$.

In fact, taken over all cycles, ν is a *complete* invariant of Acyc(Y)/ \sim_{κ} :

Theorem (M–, Mortveit [7]) If $\nu_C(O_Y) = \nu_C(O'_Y)$ for every cycle C in Y, then $O_Y \sim_{\kappa} O'_Y$.

Coxeter groups

Definition

A Coxeter group is a group with presentation

$$\langle s_1,\ldots,s_n \mid s_i s_j^{m_{ij}} \rangle$$

where $m_{ij} > 1$ iff $i \neq j$.

It follows easily that $|s_i| = 2$, and $|s_i s_j| = |s_j s_i|$.

Think of a Coxeter group as a generalized reflection group (more on this later).

Recall, for any non-zero vectors $\bm{v},\bm{w}\in\mathbb{R}^n,$ the reflection of \bm{v} across the hyperplane orthogonal to \bm{w} is

$$\mathbf{v} - 2 \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w} \; .$$

Conjugacy of Coxeter elements Spectral classes

Coxeter graphs and acyclic orientations

A *Coxeter system* is a triple (W, S, Γ) where W is a Coxeter group, S is the set of reflections that generate W, and Γ is the *Coxeter graph*:

 $\mathbf{v}[\Gamma] = S, \qquad \mathbf{e}[\Gamma] = \left\{ \{s_i, s_j\} \mid m_{ij} \geq 3 \right\}.$

Additionally, each edge $\{s_i, s_j\}$ is labeled with m_{ij} (usually the label is omitted for $m_{ij} = 3$ because these are the most common).

Note: Edges correspond to non-commuting pairs of reflections.

► A *Coxeter element* is the product of the generators in any order.

There is a bijection between the set of Coxeter elements $C := C(W, S, \Gamma)$ and $Acyc(\Gamma)$ (see [11]).

Conjugacy of Coxeter elements Spectral classes

Conjugacy of Coxeter elements

► Conjugating a Coxeter element by a simple reflection cyclically shifts the word, and corresponds to a *source-to-sink* operation (or "click"):

$$s_{\pi(1)}(s_{\pi(1)}s_{\pi(2)}\cdots s_{\pi(n)})s_{\pi(1)} = s_{\pi(2)}s_{\pi(3)}\cdots s_{\pi(n)}s_{\pi 1}$$
.

Therefore, the equivalence relation \sim_{κ} carries over to $C(W, S, \Gamma)$.

▶ Clearly, if $\mathbf{c} \sim_{\kappa} \mathbf{c}'$, then \mathbf{c} and \mathbf{c}' are conjugate in W.

► Therefore, $\kappa(\Gamma)$ is an upper bound on the number of conjugacy classes of Coxeter elements [6].

Open question: Is this bound sharp, i.e., does the converse of the statement above hold?

Conjugacy in simply-laced Coxeter groups

A Coxeter system is simply-laced if $m_{ij} \leq 3$.

Theorem (H. Eriksson, 1994 [2])

Let (W, S, Γ) be a simply-laced Coxeter system where $\Gamma = \text{Circ}_n$ (i.e., $W = \tilde{A}_{n-1}$ is the affine Weyl group). Then two Coxeter elements $c, c' \in C(W, S, \Gamma)$ are conjugate if and only if $c \sim_{\kappa} c'$.

Theorem (J.-Y. Shi, 2001 [12])

Let (W, S, Γ) be a simply-laced Coxeter system where Γ is unicyclic. Then two Coxeter elements $c, c' \in C(W, S, \Gamma)$ are conjugate if and only if $c \sim_{\kappa} c'$.

Theorem (M-, Mortveit, 2008 [7])

Let (W, S, Γ) be a simply-laced Coxeter system. Then two Coxeter elements $c, c' \in C(W, S, \Gamma)$ are conjugate if and only if $c \sim_{\kappa} c'$.

Natural reflection representation

Define
$$a_{i,j} = \cos \frac{\pi}{m_{ij}}$$
.

The natural reflection representation of W is defined on the generators $s \in S$ by

$$s_i \longmapsto I_n - 2E_{i,i} + \sum_{j : m_{ij} \ge 3} a_{i,j}E_{i,j}$$
.

Example.

Spectral classes

Identify $w \in W$ with the corresponding linear transformation in the natural reflection representation.

If w and w' are conjugate in W, then they have the same spectral class.

Question [12]: Given a Coxeter system (W, S, Γ) , how many spectral classes do the Coxeter elements in $C(W, S, \Gamma)$ fall into?

Two κ -classes that have respective acyclic orientations O_{Γ} and O'_{Γ} such that $\varphi \colon O_{\Gamma} \longmapsto O'_{\Gamma}$ for some $\varphi \in \operatorname{Aut}(\Gamma)$ also have the same spectral class.

• Therefore, $\bar{\kappa}(\Gamma)$ is an upper bound for the number of spectal classes.

Sequential Dynamical Systems Coxeter Groups Summary References Conjugacy of Coxeter elements Spectral classes

An example

Let $\Gamma = K_{2,3}$, with vertex set $\{1, 3, 5\} \sqcup \{2, 4\}$.

 $\alpha(\Gamma) = 46$, $\kappa(\Gamma) = 7$, and $\bar{\kappa}(\Gamma) = 2$. There are 2 spectral classes (See Shi, 2001 [12]):

Elements in the first six classes have characteristic polynomial $f(x) = x^5 - 3x^4 - 6x^3 - 6x^2 - 3x + 1$.

Elements in the last class have characteristic polynomial $f(x) = x^5 - x^4 - 8x^3 - 8x^2 - x + 1$.

Sequential Dynamical Systems Coxeter Groups Summary References Spectral classes

An example (cont.)

Figure: The update graph $U(K_{2,3})$: Connected components are in 1–1 correspondence with $Acyc(K_{2,3})$.

Consider the mapping $(s_{\pi_i})_i \stackrel{\phi}{\longmapsto} (\pi_i \mod 2)_i$.

Non-adjacency in Γ coincides with parity, that is, if $\mathbf{c} = \mathbf{c}'$, then $\phi(\mathbf{c}) = \phi(\mathbf{c}')$.

- 12 size-1 components: 10101
- 24 size-2 components: 01011, 11010, 01101, 10110.
- 6 size-4 components: 10011, 11001.
- 2 size-6 components: 01110
- 2 size-12 components: 11100, 00111.

Sequential Dynamical Systems Coxeter Groups Summary References Conjugacy of Coxeter elements Spectral classes

An example (cont.)

Figure: The graph $C(K_{2,3})$ contains the component on the left, and three isomorphic copies of the structure on the right (but with different vertex labels).

- Component at left: $\phi(\pi) \in \{01101, 11010, 10101, 01011, 10110\}.$
- Component at right: $\phi(\pi) \in \{11100, 11001, 10011, 00111, 01110\}$.

Quiver representations [8]

A quiver is a finite directed graph (loops and multiple edges allowed).

A quiver Q with a field K gives rise to a path algebra KQ.

There is a natural correspondence (categorial equivalence) between KQ-modules, and K-representations of Q.

► A path algebra is finite-dimensional if and only if the quiver is acyclic. Modules over finite-dimensional path algebras form a reflective subcategory.

A reflection functor maps representations of a quiver Q to representations of a quiver Q', where Q' differs from Q by a source-to-sink operation.

▶ A composition of n = |v[Q]| distinct reflection functors is not the identity, but a *Coxeter functor.*

Node-firing games [3]

▶ In the *chip-firing game*, each vertex of a graph is given some number (possibly zero) of chips.

If vertex *i* has degree d_i , and at least d_i chips, then a legal move (or a "click") is a transfer of one chip to each neighbor.

A legal move is in a sense a generalization of a source-to-sink operation.

▶ In the *numbers game*, each vertex of a graph is assigned an integer value, and the edges are weighted according to the m_{ii} relations of the Coxeter group.

The legal sequences of moves in the numbers game are in 1–1 correspondence with the reduced words of the Coxeter group with that Coxeter graph.

Summary of SDS / Coxeter theory connections

		Coxeter groups	Sequential dynamical systems
Base graph	\longleftrightarrow	Coxeter graph F	Dependency graph Y
Αсус(Γ)	\longleftrightarrow	Coxeter elements $c = s_{\pi(1)} s_{\pi(2)} \cdots s_{\pi(n)}$	SDS maps $[\mathfrak{F}_{Y},\pi]=F_{\pi(n)}\circ\cdots\circ F_{\pi(2)}\circ F_{\pi(1)}.$
Clicks	\longleftrightarrow	Conjugacy classes of Coxeter elements	Cycle-equivalence classes of SDS maps
Aut(Γ) orbits	\longleftrightarrow	Spectral classes of Coxeter elements	Cycle-equivalence classes of SDS maps (finer)

Connections to quiver representations and chip firing

		Quiver representations	Chip-firing game
Base graph	\longleftrightarrow	Undirected quiver $ar{Q}$	Underlying graph Г
Αсус(Γ)	\longleftrightarrow	Quiver <i>Q</i> of a finite-dimensional path-algebra <i>KQ</i>	Configurations, or states of the game
Clicks	\longleftrightarrow	Reflection functors	Legal moves
$Aut(\Gamma)$	\longleftrightarrow	Vector space isomorphisms	Equivalent states

Summary of future research

Combinatorics

■ Is there a nice closed-form or easily computable solution to $\bar{\kappa}(\Gamma)$?

Sequential dynamical systems

Are $\bar{\kappa}(Y)$ and $\bar{\delta}(Y)$ sharp upper bounds for the number of SDS maps up to cycle equivalence?

Coxeter groups

- Prove that two Coxeter elements are conjugate iff they are κ-equivalent, for a non-simply-laced Coxeter system.
- Is $\bar{\kappa}(\Gamma)$ a sharp upper bound for the number of spectral classes of Coxeter elements of (W, S, Γ) ? If not, for which graphs does it fail, and by how much?

References

- C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of simulation III: Equivalence of SDS. Appl. Math. and Comput. 122, 2001:325–340.
- [2] H. Eriksson. Computational and combinatorial aspects of Coxeter groups. Ph.D. thesis, KTH, Stockholm, 1994.
- [3] K. Eriksson. Node firing games on graphs. Contemp. Math. 178, 1994:117-127.
- [4] M. Macauley, H. S. Mortveit. Cycle equivalence of graph dynamical systems. Nonlinearity. To appear, 2009. arXiv:0802.4412.
- [5] M. Macauley, H. S. Mortveit. Equivalences on acyclic orientations. Preprint, 2008. arXiv:0709.0291.
- [6] M. Macauley, H. S. Mortveit. On enumeration of conjugacy classes of Coxeter elements. Proc. AMS. 136, 2008:4157–4165. arXiv:0711.1140.
- [7] M. Macauley, H. S. Mortveit. A solution to the conjugacy problem for Coxeter elements in simply laced Coxeter groups. Submitted to Adv. Math., 2008.
- [8] R. Marsh, M. Reineke and A. Zelevinsky. Generalized associahedra via quiver representations. Trans. AMS 355, 2003:4171–4186.
- [9] H. S. Mortveit, C. M. Reidys. An introduction to sequential dynamical systems. Springer Verlag, 2007.
- [10] W. T. Tutte. A contribution to the theory of chromatic polynomials. Canad. J. Math. 6, 1954:80–91.
- [11] J.-Y. Shi. The enumeration of Coxeter elements. J. Comb. Algebra 6, 1997:161-171.
- [12] J.-Y. Shi. Conjugacy relation on Coxeter elements. Adv. Math., 161:1-19, 2001.