Graph Dynamical Systems, Rank Functions, and Coxeter Groups

Matthew Macauley

Department of Mathematics
University of California, Santa Barbara

Network Dynamics and Simulation Science Laboratory
Virginia Bioinformatics Institute
Virginia Polytechnic Institute and State University

Mathematics Colloquium
Clemson University
October 19, 2007
Outline

1. Rank Functions
 - Hyperplane arrangements
 - Sequential dynamical systems
 - Permutahedra
 - Rank function of a graph

2. Coxeter Groups
 - Fundamentals
 - Cycle Equivalence
 - Enumeration
 - Aut(Y)-actions

3. Update Order Instability
 - Cycle equivalence
 - Attractor Basin Reachability
 - Periodic point sets
 - Summary of Stability
Consider the problem of counting the number of chambers $|C(\mathcal{H})|$ of a hyperplane arrangement \mathcal{H} in \mathbb{R}^n.

Example:

![Figure: Cutting the sphere with hyperplanes](image)

The number of chambers depends not only on the number of hyperplanes, but also on the linear dependencies of the normal vectors. This is a problem handled by *matroids*.
Consider a hyperplane arrangement $\mathcal{H} = \{H_1, \ldots, H_k\}$, with corresponding normal vectors $\mathcal{V} = \{v_1, \ldots, v_k\}$.

If the normal vectors are linearly independent, then $|C(\mathcal{H})| = 2^k$.

If the hyperplanes (normal vectors) are in general position, $|C(\mathcal{H})| = 2 \sum_{i=0}^{n-1} \binom{k-i}{i}$.

Define the rank function of \mathcal{V} by

$$r : \mathcal{P}(\mathcal{V}) \longrightarrow \mathbb{Z}, \quad r(\{v_{i_1}, \ldots, v_{i_k}\}) = \dim \langle v_{i_1}, \ldots, v_{i_k} \rangle.$$

$|C(\mathcal{H})|$ depends only on the rank function of \mathcal{V}.
Definition

- A *sequential dynamical system* (SDS) is a triple consisting of:

 - A graph Y with vertex set $\nu(Y) = \{1, 2, \ldots, n\}$.
 - For each vertex i a state $y_i \in K$ (e.g. $F_2 = \{0, 1\}$) and a local function $F_i : K^n \rightarrow K^n$

 $$F_i(y = (y_1, y_2, \ldots, y_n)) = (y_1, \ldots, y_{i-1}, f_i(y[i]), y_{i+1}, \ldots, y_n).$$

 vertex function

 - A ordering $\pi = \pi_1 \pi_2 \cdots \pi_n \in S_Y$ of the vertex set.

- The SDS map generated by the triple $(Y, (F_i)_1^n, \pi)$ is

 $$[\mathcal{Y}, \pi] = F_{\pi_n} \circ F_{\pi_{n-1}} \circ \cdots \circ F_{\pi_1}.$$
Update graphs

Question: When does $[\mathcal{F}_Y, \pi] = [\mathcal{F}_Y, \sigma]$, for distinct update orders $\pi, \sigma \in S_Y$?

Definition. The update graph $U(Y)$ has vertex set S_Y. The edge $\{\pi, \sigma\}$ is present iff:

- π and σ different by exactly an adjacent transposition $(i, i + 1)$,
- $\{\pi_i, \pi_{i+1}\} \notin e[Y]$.

Example. Let Circ$_4$ be the circular graph on 4 vertices.

```
1234  2341  1243-----1423  1324-----1342
3412  4123  3241-----3421  3124-----3142
1432  2143  2134-----2314  2413-----2431
3214  4321  4132-----4312  4213-----4231
```

Figure: The update graph U(Circ$_4$).
Functional equivalence

Define an equivalence relation \(\sim_Y \) on \(S_Y \) by \(\pi \sim_Y \sigma \) if \(\pi \) and \(\sigma \) are on the same connected component of \(U(Y) \).

Prop. If \(\pi \sim_Y \sigma \), then \([\widehat{\delta}_Y, \pi] = [\widehat{\delta}_Y, \sigma]\).

\(\triangleright \) An ordering \(\pi \in S_Y \) induces an acyclic orientation of \(Y \), denoted \(O^\pi_Y \).

\(\triangleright \) There is a bijection between

\[
f_Y : S_Y/\sim_Y \longrightarrow \text{Acyc}(Y), \quad f_Y([\pi]_Y) = O^\pi_Y.
\]

Thus, \(\alpha(Y) = |\text{Acyc}(Y)| \) is an upper bound for the number of functionally distinct SDS maps \([\widehat{\delta}_Y, \pi]\) for a fixed choice of \(\widehat{\delta}_Y \). This bound is known to be sharp.

\(\triangleright \) The function \(\alpha \) satisfies the recurrence relation:

\[
\alpha(Y) = \alpha(Y_e') + \alpha(Y_e'') ,
\]

where \(Y_e' \) and \(Y_e'' \) are formed from \(Y \) by deleting and contracting edge \(e \).
Permutahedra

The \textit{n-permutahedron} Π_n is the convex hull of all permutations of the points $(1, 2, \ldots, n) \in \mathbb{R}^n$. It is an $(n - 1)$-dimensional polytope.

The vertices and edges of Π_n can be labeled as follows:

- Two vertices are adjacent if they differ by swapping two coordinates in adjacent position.
- An edge is labeled with a transposition (x_i, x_j) of the values of the two entries that are swapped.

\textit{Note:} This labeling scheme does not agree with the geometric coordinates of the vertices!
Figure: Permutahedra, for $n = 3$ and $n = 4$.
Constructing $U(Y)$ from Π_n

- Π_n is the update graph of E_n.

- Each transposition $(i, j) \in S_n$ corresponds with a complete set of parallel edges of Π_n.

- The update graph $U(Y)$ can be constructed by “cutting” Π_n with a hyperplane $H^n_{i,j}$ for every edge $\{i, j\} \in e[Y]$.
An example

Figure: Hyperplanes cuts corresponding with the edges \{1, 2\}, \{2, 3\}, and \{1, 3\} in $Y < K_4$.

(a) Y

(b) Constructing $U(Y)$
The rank function of a graph

Definition. The *rank function* of a graph \(Y \) is the function

\[
r_Y : \mathcal{P}(Y) \rightarrow \mathbb{Z} , \quad r_Y(Z) = r(\{v_{i,j}^n | \{i,j\} \in e[Z]\}) ,
\]

where \(v_{i,j}^n \) is the normal vector of the hyperplane \(H_{i,j}^n \) from the constructing of \(U(Y) \).

Definition. Let \(f_1, \ldots, f_n \) be a basis for the dual space of \(\mathbb{R}^n \). For a graph \(G = (V,E) \), let \(\mathcal{H}(G) \) be the arrangement defined by

\[
\mathcal{H}(G) = \{ \ker(f_i - f_j) | \{i,j\} \in E \} .
\]

\(\mathcal{H}(G) \) is called the *graphic arrangement* of \(G \).

Prop. If \(Z < Y \), then \(r_Y(Z) \) is the number of edges in a spanning forest of \(Z \), i.e.,

\[
r_Y(Z) = |v[Z]| - n(Z) .
\]
A Coxeter group is a group with presentation

\[C = \langle r_1, \ldots, r_n \mid r_i^2, (r_i r_j)^{m_{ij}} \ (i \neq j) \rangle. \]

A Coxeter element is the product of the generators in any order.

Every Coxeter group \(C \) has a Coxeter graph \(\Gamma(C) \) with vertex set \(\{r_1, \ldots, r_n\} \) and edges \(\{r_i, r_j\} \) labeled with \(m_{ij} \) iff \(m_{ij} \geq 3 \).

Prop. There is a bijection between the Coxeter elements of \(C \) and the acyclic orientations of \(\Gamma(C) \).
Source-to-sink moves

- Cyclically shifting a Coxeter element corresponds with conjugation:
 \[r_{\pi_1} \left(r_{\pi_1} r_{\pi_2} \cdots r_{\pi_n} \right) r_{\pi_1} = r_{\pi_2} r_{\pi_3} \cdots r_{\pi_n} r_{\pi_1} . \]

- This corresponds to a *click* of vertex \(r_{\pi_1} \): changing it from a source to a sink in the acyclic orientation of the Coxeter graph \(Y = \Gamma(C) \).

- This puts an equivalence relation \(\sim_{\kappa} \) on \(\text{Acyc}(Y) \), (and thus on \(S_Y / \sim_Y \)).

- The function \(\kappa(Y) = | \text{Acyc}(Y) / \sim_{\kappa} | \) is an upper bound for the number of conjugacy classes of Coxeter elements. (Is it sharp???)
Cycle equivalence

Definition Two finite dynamical systems $\phi, \psi : K^n \to K^n$ are *cycle equivalent* if there exists a bijection $h : \text{Per}(\phi) \to \text{Per}(\psi)$ such that

$$\psi|_{\text{Per}(\psi)} \circ h = h \circ \phi|_{\text{Per}(\phi)}.$$

Let $\sigma, \tau \in S_n$ be

$$\sigma = (n, n-1, \ldots, 2, 1), \quad \tau = (1, n)(2, n-1) \cdots ([n/2], [n/2] + 1),$$

and let C_n and D_n be the groups

$$C_n = \langle \sigma \rangle, \quad D_n = \langle \sigma, \tau \rangle.$$

These groups act on update orders $\pi = \pi_1 \pi_2 \cdots \pi_n$ by *shift* and *reflection* as follows:

$$\sigma(\pi) := \sigma \cdot \pi = \pi_2 \pi_3 \cdots \pi_n \pi_1, \quad \tau(\pi) := \tau \cdot \pi = \pi_n \pi_{n-1} \cdots \pi_2 \pi_1.$$
Cycle equivalence of SDSs

Theorem

For any $\pi \in S_Y$, the SDS maps $[\mathfrak{S}_Y, \pi]$ and $[\mathfrak{S}_Y, \sigma(\pi)]$ are cycle equivalent. Moreover, if $K = \mathbb{F}_2$, then these are cycle equivalent to $[\mathfrak{S}_Y, \tau(\pi)]$ as well.

Example. Define the function $\text{nor} : \mathbb{F}_2^k \rightarrow \mathbb{F}_2$ by $\text{nor}(x) = \prod_{i=1}^{k}(1 + x_i)$.

![Diagram](image)

Figure: Phase spaces of an SDS with different update orders.
The function $\kappa(Y)$

- The function $\kappa(Y) := |\text{Acyc}(Y)/\sim_\kappa|$ is thus an upper bound for:
 - The number of conjugacy classes of Coxeter elements of a Coxeter group with Coxeter graph Y.
 - The number of SDS maps $[\mathfrak{F}_Y, \pi]$ up to cycle-equivalence for a fixed choice of \mathfrak{F}_Y.

Theorem

If e is a bridge edge of Y linking components Y_1 and Y_2, then

$$\kappa(Y) = \kappa(Y_1) \kappa(Y_2).$$

If e is a non-bridge edge of Y, then

$$\kappa(Y) = \kappa(Y_e') + \kappa(Y_e'').$$
The case $K = \mathbb{F}_2$ and $\delta(Y)$

- The function $\delta(Y) := |\text{Acyc}(Y)/\sim_\delta|$ is an upper bound for the number of SDS maps $[\mathfrak{F}_Y, \pi]$ up to cycle-equivalence for a fixed choice of \mathfrak{F}_Y when $K = \mathbb{F}_2$.

Theorem

If Y is a connected undirected graph, then

$$\delta(Y) = \begin{cases} \frac{1}{2}(\kappa(Y) + 1) & \text{if } Y \text{ is bipartite}, \\ \frac{1}{2}\kappa(Y) & \text{if } Y \text{ is not bipartite}. \end{cases}$$
An example

Let Q^3_2 be the binary 3-cube. A tedious calculation gives $\alpha(Y) = 1862$.

$$\kappa \left(\begin{array}{c}
\text{cube} \\
\text{cube}
\end{array} \right) = \kappa \left(\begin{array}{c}
\text{cube} \\
\text{cube}
\end{array} \right) + \kappa \left(\begin{array}{c}
\text{cube} \\
\text{cube}
\end{array} \right) = \kappa \left(\begin{array}{c}
\text{cube} \\
\text{cube}
\end{array} \right) + 2\kappa \left(\begin{array}{c}
\text{cube} \\
\text{cube}
\end{array} \right) + \kappa \left(\begin{array}{c}
\text{cube} \\
\text{cube}
\end{array} \right)$$

$$= \kappa \left(\begin{array}{c}
\text{cube} \\
\text{cube}
\end{array} \right) + 2\kappa \left(\begin{array}{c}
\text{cube} \\
\text{cube}
\end{array} \right) + 2\kappa \left(\begin{array}{c}
\text{cube} \\
\text{cube}
\end{array} \right) + \kappa \left(\begin{array}{c}
\text{cube} \\
\text{cube}
\end{array} \right) + \kappa \left(\begin{array}{c}
\text{cube} \\
\text{cube}
\end{array} \right)$$

$$= \kappa \left(\begin{array}{c}
\text{cube} \\
\text{cube}
\end{array} \right) + 4\kappa \left(\begin{array}{c}
\text{cube} \\
\text{cube}
\end{array} \right) + 2\kappa \left(\begin{array}{c}
\text{cube} \\
\text{cube}
\end{array} \right) + \kappa \left(\begin{array}{c}
\text{cube} \\
\text{cube}
\end{array} \right) + \kappa \left(\begin{array}{c}
\text{cube} \\
\text{cube}
\end{array} \right)$$

$$= 27 + 64 + 16 + 12 + 14 = 133$$

Thus, $\kappa(Q^3_2) = 133$, and $\delta(Q^3_2) = 67$. But...many of these equivalence classes are related by some automorphism of Q^3_2. By acting on Q^3_2 by $\text{Aut}(Q^3_2)$ an applying Burnside’s Lemma, we get 8 distinct orbits. Therefore:

If $Y = Q^3_2$, then for a fixed choice of functions \mathfrak{F}_Y, there are at most 8 possible cycle structures of the SDS map $[\mathfrak{F}_Y, \pi]$, up to isomorphism.
Cycle equivalence as a measure of stability

Prop. If Y is a tree, then $\kappa(Y) = 1$.

Corollary. If Y is a tree, then for a fixed choice of functions \mathcal{F}_Y, all SDS maps $[\mathcal{F}_Y, \pi]$ are cycle equivalent.

- Adding more edges to Y can only increase $\kappa(Y)$, and thus the number of possible cycle structures of SDS maps.

Conclusion. In general, adding edges to the dependency graph of an SDS causes the dynamics to become less stable with respect to update order.
Reachable attractor basins as a measure of stability

Consider a sequential dynamical system over a graph Y, with 2-threshold functions.

- If Y is a tree, then there are states that can reach $2^n - n = O(2^n)$ fixed points by varying the update order.

- If $Y = K_n$, then any given state can reach at most $n + 1$ fixed points by varying the update order.

- In a recent paper, we have extended this to $G_{n,p}$ for various values of p.

Conclusion. In general, adding edges to the dependency graph of an SDS causes the dynamics to become *more* stable with respect to update order.
Word-independence as a measure of stability

▶ For some SDSs, the set of periodic points is independent of the update order. Such systems are said to be word-independent.

▶ Fixed point systems (such as threshold systems) are word-independent.

▶ Being word-independent seems to be more of a property of the functions, rather than the graph.

Conclusion. In general, adding edges to the dependency graph of an SDS has *very little* effect on the stability of the dynamical system.
What is going on???

We are discussing *different notions* of update order instability!

By update order stability, one can measure:

- How many different possible cycles structures (long term behaviors) are there...
- How many different attractor basins can be reached from a particular state ...
- Which states can arise as fixed points...

...as the update order is perturbed.

Moral: Be *careful* when making general statements about the update order stability of a dynamical system!

Question: These ideas have only been studied independently. Is there a way to tie them together to paint a clearer picture?
Role of the graph structure in complex systems

When studying complex systems, it is natural to ask the following question:

Question 1. *What role does the structure of the dependency graph play in the dynamics of the a system defined over it?*

A good way to approach this is to ask another question:

Question 2. *Does there exist a good measure, or classification of graphs, useful for people studying graph dynamical systems?*

Key idea: Such a measure should be able to capture the cycle structure of the graph.

Measures such as the *degree distribution* or *clustering coefficient* can’t detect the presence of large cycles.
So... Why do we care about such a question?

(a) It’s an interesting problem
(b) It’s a novel idea
(c) There are real applications to modeling of biological, epidemiology, and social networks
(d) The NSF cares (and they’re rich)

Answer: All of the above!

Yes, the NSF has a passing interest, to the tune of $752 million over the next 5 years!

The objective of their Cyber-enabled Discovery and Innovation (CDI) program: Broaden the Nation’s capability for innovation by developing a new generation of computationally based discovery concepts and tools to deal with complex, data-rich, and interacting systems.
Approach: Edge shattering

- Recall that the rank function r_Y captures the cycle structure of a graph, and is determined by how many components remain upon removal of a certain subset of edges.

- For a graph with m edges, the rank function is of size $\Theta(2^m)$, thus it is uncomputable for most graphs.

- However, we can extract useful edge shattering properties from the following functions $[0,1] \rightarrow \mathbb{N}$:
 - $\mu_Y(k)$: average number of components when $k\%$ of edges are removed from Y.
 - $M_Y(k)$: maximum number of components when $k\%$ of edges are removed from Y.
 - $\lambda_Y(k)$: average size of largest component when $k\%$ of edges are removed from Y.
 - $\sigma_Y(k)$: average size of a component when $k\%$ of edges are removed from Y.
Questions

- How well do these edge shattering functions distinguish commonly studied classes of graphs? For example:
 - Classical random graphs, such as $G_{n,p}$ and $G_{n,M}$.
 - Small-world networks (Watts & Strogatz, 1998)
 - Scale-free networks (Barabási and Albert, 1999)
 - Real-world biological, epidemiological, and social networks.

- Can one reconstruct a network of a particular size that satisfies certain edge shattering properties (hard!).
Acknowledgments

Joint work with: V. S. Anil Kumar, Reinhard Laubenbacher, Jon McCammond, Henning Mortveit.

Special thanks:

- Network Dynamics and Simulation Science Laboratory (NDSSL), at the Virginia Bioinformatics Institute,
- Los Alamos National Laboratory,
- The Fields Institute,
- All of you at Clemson University.

SDS course web page with link to papers:

Web: http://www.math.vt.edu/people/hmortvei/class_home/4984_15748.html

NDSSL:

Web: http://ndssl.vbi.vt.edu