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Unlabeled Cayley graphs

Previously, we’ve labeled the nodes of Cayley graphs with configurations.

If we want to focus on a graph’s structure, we can leave the nodes unlabeled.

For example, consider the following two groups of size 4:

G = V4 G = C4

The abstract group isomorphic to Rect is the Klein
4-group, denoted V4, named after German mathematician
Felix Klein (1849–1925).

Questions
Are the two groups whose Cayley graphs are shown above isomorphic?

Can you think of an object whose symmetry group is the group on the right?
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Cyclic groups (preview)

Groups that can be generated by a single action are called cyclic.

These describe shapes that have only rotational symmetry.

The shape of a molecule of boric acid, B(OH)3, is shown below. It should be clear that
there are three symmetries:

the identity action, 1

120◦ counterclockwise rotation, r

240◦ counterclockwise rotation, r2.

1

rr2

G = C3

The boric acid molecule is chiral because a mirror reflection is not a symmetry.

Inorganic chemists use group theory to classify molecules and crystals by their symmetries.

The triangle symmetry group Tri = 〈r , f 〉 contains C3 = 〈r〉 as a subset. We say that C3 is
a subgroup of Tri.
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Labeling Cayley graphs with actions

When drawing Cayley graphs, we have done one of two things with the nodes:

1. Label nodes with configurations of an object.

2. Leaving nodes unlabeled.

There is a 3rd choice, since every path represents an action in the group.

3. Label the nodes with actions.

Here is one way to do this for the Klein 4-group, G = V4:

1 2
4 3

2 1
3 4

4 3
1 2

3 4
2 1

e

v

h

vh

By the “regularity property” of Cayley graphs, it does not matter where we start, or what
path we take when labeling.
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Labeling Cayley graphs with actions

Here are two canonical ways to label the nodes of the Cayley graph of Tri = 〈r , f 〉.

1
2 3

3
1 2

2
3 1

1
3 2

3
2 1

2
1 3

1

r r2

f

frfr2

1

r r2

f

r2frf

Technically, these are right Cayley graphs because we are reading from left-to-right.

In other words, traversing around the graph corresponds to right multiplication.

Remark
Every path corresponds to an action a ∈ G . To compute a path for ab ∈ G :

start at node a (or equivalently, start at the identity node and follow any path for a).

follow any path corresponding to b.
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Another group of size 8

The eight symmetries of a square form a group generated by:

a 90◦ counterclockwise rotation r ,

a horizontal flip f .

We’ll call this group Sq = 〈r , f 〉.

1 2
4 3

r

f

Question: Do any of these groups have the same structure? (Are they “isomorphic”?)

Coin2

1 2 2 1

1 2 2 1

2 1 1 2

2 1 1 2

s

s

s

s

t t

tt

000

100

010

110

001

101

011

111

Light3

1

f

r

rf

r2

r2f

r3

r3f

Sq

Can you find a property that one group (not graph!) has that the others do not?
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Group presentations

Thus far, we’ve described a group by its generators.

G = 〈r , f 〉 means “G is generated by r and f .”

However, this doesn’t tell us how they generate.

Definition
A group presentation for G is a description of the group as

G =
〈
generators

∣∣∣ relations〉 .
The vertical bar can be thought of as meaning “subject to”.

Even for a fixed set of generators, a group presentation is not unique.

Key idea
A presentation is just an algebraic way to encode a Cayley graph.

But, it doesn’t necessarily tell us which Cayley graph!
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Group presentations
Here are some example of presentations:

e

v

h

vh

G = V4

〈
v , h | v2 = h2 = e, vh = hv

〉

1

r r2

f

r2frf
G = Tri

〈
r , f | r3 = f 2 = 1, rf = fr2

〉

1

t

tssts

st

s

G = Tri

〈
s, t | s2 = t2 = 1, sts = tst

〉
The relation r3 = 1 is redundant in the second presentation:

rf = fr2 ⇒ f (rf ) = r2 ⇒ (frf )2 = r4 ⇒ fr2f = r4 ⇒ (fr2)f = r4

⇒ (rf )f = r4 ⇒ r = r4 ⇒ 1 = r3.

But removing r3 = 1 from Tri =
〈
r , f | r3 = f 2 = 1, rf = fr−1

〉
yields an infinite group.

1 r r2r−2 r−1

f rf r2fr−2f r−1f

· · ·

· · ·

· · ·

· · ·
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The free group on 2 generators

F2 =
〈
a,b |

〉

1

b

b−1

aa−1

ab

a2

ab-1

a-1b

a−2

a-1b-1

b2

baba-1

b−2

b-1ab-1a-1
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Tri as a quotient of F2

Tri=
〈
r, f | r3 = f2 = rfrf = 1

〉

1

f

f

rr2

rf

r2

rf

r2f

r

r2f

1

r2frf

1

r2frf

1

r

r2

f

r2f

rf
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Constructing Z12 = {0, 1, . . . , 11} from the free group on 1 generator

· · · −3 −2 −1 0 1 2 3 · · ·

Z
φ = ι ◦ π

π

0
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5
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8
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Z12

...
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−10
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−1

0

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

...

Z/〈12〉

ι
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Group presentations

The word problem

Given a presentation G =
〈
g1, . . . , gn | r1 = e, . . . , rm = e

〉
, is G = {e}?

Exercise

Show that G =
〈
a, b | ab = b2a, ba = a2b

〉
is the trivial group.

aba−1b−2 = 1

and

bab−1a−2 = 1

=⇒

G =
〈
a, b, | a = b = 1

〉
= 〈1〉

An even harder problem is the isomorphism problem: Given G1 and G2, is G1 ∼= G2?

Question
Given a group presentation that “looks like” a large group, how can we be absolutely sure?
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Unsolvability of the word problem

Theorem
The word problem is unsolvable, even for finitely presented groups.

4-dimensional sphere problem
Given a 4-dimensional surface, determine whether it is homeomorphic to the 4-sphere.

Every surface S has a group π1(S) called the fundamental group of all “looped paths.”

Four dimensions is big enough that for any G , we can build a surface for which π1(S) ∼= G .

Theorem
The 4-dimensional sphere problem is unsolvable.

Summary of the proof
Suppose there exists a solution, and let G be a group.

1. Build a surface S such that π1(S) ∼= G .

2. Determine whether S is a 4-sphere (all loops on a sphere are trivial).

3. This solves the word problem for G . (Contradiction)
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