Visual Algebra

Lecture 1.5: Cayley tables

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences
Clemson University
South Carolina, USA
http://www.math.clemson.edu/~macaule/

Cayley tables

In some sense, a Cayley graph is a type of "group calculator."

Another useful tool is something we all learned about in grade school.

We will call this a Cayley table.

Notational convention

Since $ab \neq ba$ in general, we will say that the entry in row a and column b is ab.

Cayley tables can reveals patterns that are otherwise hidden.

Sometimes, these patterns only appear if we arrange elements in a certain order.

The quaterternion group

Here are four Cayley graphs of a new group called the quaternion group, Q_8 .

It's in no way clear that these even represent isomorphic groups.

Notice how each one highlights different structural properties.

The first two Cayley graphs emphasize similarities and differences between Q_8 and Sq.

The group Q_8 is generated by "imaginary numbers" i, j, k, with $i^2 = j^2 = k^2 = -1$.

multiplying in this direction yields a positive result

multiplying in this direction yields a negative result

The quaternion group

Two possible presentations for the quaternions are

$$Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk = -1 \rangle = \langle i, j \mid i^4 = j^4 = 1, \ iji = j \rangle.$$

This is one case where it's convenient to not use a minimal generating set.

	1	i	j	k	-1	-i	- ј	-k
1	1	i	j	k	-1	-i	-ј	-k
i	i	-1	k	-ј	-i	1	-k	j
j	j	-k	-1	i	- ј	k	1	- <i>i</i>
k	k	j	-i	-1	-k	- ј	i	1
-1	-1	- <i>i</i>	- ј	-k	1	i	j	k
- <i>i</i>	- <i>i</i>	1	-k	j	i	-1	k	- ј
-j	_j	k	1	- <i>i</i>	j	-k	-1	i
-k	-k	-j	i	1	k	j	-i	-1

Remember how we said that some patterns in Cayley tables only appear if we arrange elements in a certain order?

The quaternion group

Rather than order elements as 1, i, j, k, -1, -i, -j, -k in

$$Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk = -1 \rangle = \langle i, j \mid i^4 = j^4 = 1, iji = j \rangle$$

let's construct a Cayley table with them ordered 1, -1, i, -i, j, -j, k, -k.

	1	-1	i	- <i>i</i>	j	-ј	k	-k
1	1	-1	i	-i	j	-ј	k	-k
-1	-1	1	-i	i	-ј	j	-k	k
i	i	-i	-1	1	k	-k	-ј	j
-i	-i	i	1	-1	-k	k	j	-j
j	j	-ј	-k	k	-1	1	i	-i
- ј	- ј	j	k	-k	1	-1	-i	i
k	k	-k	j	-j	-i	i	-1	1
-k	-k	k	-j	j	i	-i	1	-1

Remark

"Collapsing" the group $Q_8=\left\{\pm 1,\pm i,\pm j,\pm k\right\}$ in this manner reveals the structure of $V_4!$

This is an example of taking a quotient of a group by a subgroup. We'll return to this!

Another example of a quotient: **Light**₃

"subgroup of Light3

"quotients of Light₃

Cayley tables

Proposition

An element cannot appear twice in the same row or column of a multiplication table.

Proof

Suppose that in row a, the element g appears in columns b and c. Algebraically, this means

$$ab = g = ac$$
.

Multiplying everything on the left by a^{-1} yields

$$a^{-1}ab = a^{-1}g = a^{-1}ac \implies b = c.$$

Thus, g (or any element) element cannot appear twice in the same row.

Verifying that g cannot appear twice in the same column is analogous. (Exercise)

once, is

Question. If we have a table where every element appears in every row and column once, is it a Cayley table for some group?

Latin squares and forbidden Cayley tables

A table where every element appears in every row and column once is called a Latin square.

Here is an example of two Latin squares on a set of five elements, with identity element e.

	e	а	b	С	d
e	e	а	b	С	d
а	а	е	С	d	b
Ь	Ь	d	е	а	С
С	С	b	d	e	а
d	d	С	а	b	e

Exploratory exercise

Can you construct a Cayley graph for either of these Latin squares? If not, what goes wrong?