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Forbidden Cayley tables?

Last time, we finished with two Latin squares on a set of five elements.

These are tables where every element appears in every row and column once.

There is even an identity element e.
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Question
Are these Cayley tables of a group? If not, what goes wrong?

More generally: Can we use a Latin square to define an abstract group?
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Forbidden Cayley graphs?

Motivated by symmetries, we began by calling members of a group “actions.”

Then we encountered Q8, and it wasn’t clear that there even is an underlying action.

It is natural to ask: Can we use a Cayley graph to define an abstract group?
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Consider r2s = sr , and the blue-red path. This takes 10 iterations from any node to return.

But that would imply that G = 〈sr〉, and every cyclic group must be abelian. (Why?)

As before, we can try to write a presentation from this graph:

G =
〈
r , s | r5 = s2 = 1, rs = sr3, r2s = sr , r3s = sr4, r4s = sr2

〉
Question. What group is this?
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Binary operations and associativity
The previous slide is a cautionary tale for why we need a formal definition.

A group is a set of elements satisfying a few properties.

Combining elements can be done with a binary operation, e.g., +, −, ·, and ÷.

Definition
If ∗ is a binary operation on a set S, then s ∗ t ∈ S for all s, t ∈ S. In this case, we say that
S is closed under the operation ∗.

Alternatively, we say that ∗ is a binary operation on S.

Definition
A binary operation ∗ on S is associative if

a ∗ (b ∗ c) = (a ∗ b) ∗ c, for all a, b, c ∈ S.

Associative basically means parentheses are permitted anywhere, but required nowhere.

For example, addition and multiplication are associative, but subtraction and division are
not:

4− (1− 2) 6= (4− 1)− 2, 4/(1/2) 6= (4/1)/2.
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The formal definition of a group

We are now ready to formally define a group.

Definition
A group is a set G satisfying the following properties:

1. There is an associative binary operation ∗ on G .

2. There is an identity element e ∈ G . That is, e ∗ g = g = g ∗ e for all g ∈ G .

3. Every element g ∈ G has an inverse, g−1, satisfying g ∗ g−1 = e = g−1 ∗ g.

Remarks
Depending on context, the binary operation may be denoted by ∗, · , +, or ◦.
We frequently omit the symbol and write, e.g., xy for x ∗ y .
We only use + if G is abelian. Thus, g + h = h + g (always), but in general, gh 6= hg.

Uniqueness of the identity and inverses is not built into this definition. However, it’s
an easy exercise to establish.
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A few simple properties

Let’s verify uniqueness of the identity and inverses.

Theorem
Every element of a group has a unique inverse.

Verification
Let g be an element of a group G . By definition, it has at least one inverse.

Suppose that h and k are both inverses of g. This means that gh = hg = e and
gk = kg = e. It suffices to show that h = k. Indeed,

h = he = h(gk) = (hg)k = ek = k,

which is what we needed to show. �

The technique of the following is similar.

Theorem
Every group has a unique identity element.
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Revisiting our Latin squares
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The table on the left describes a group Z5 := {0, 1, 2, 3, 4} under addition modulo 5:

e = 0, a = 1, b = 3, c = 2, d = 4.

The table on the right fails associativity:

(a ∗ b) ∗ d = c ∗ d = a, a ∗ (b ∗ d) = a ∗ c = d .

Due to F.W. Light’s associativity test, there is no shortcut for determining whether the
binary operation in a Latin square is associative.

Specifically, the worst-case running time is O(n3), the number of (a, b, c)-triples.
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