Visual Algebra

Lecture 2.1: Complex numbers and matrices

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

Families of groups

In the previous chapter, we encoutered groups meant to appeal to intuition and motivate key concepts. In this chapter, we'll introduce a number of families of groups.

We'll need a diverse collection of go-to examples to keep us grounded. We'll begin with

- 1. cyclic groups: rotational symmetries
- 2. **abelian groups**: ab = ba
- 3. dihedral groups: rotational and reflective symmetries
- 4. permutation groups: collections of rearrangements.

We'll show that *every* finite group is isomorphic to a permutation group.

Then, by modifying some of our familiar groups, we'll encounter the:

- 5. quaternion and dicyclic groups,
- 6. diquaternion groups
- 7. semidihedral and semiabelian groups.

Finally, we'll take a tour of:

- 8. groups of matrices
- 9. direct products and semidirect products of groups.

We'll see a few other visualization techniques and surprises along the way.

A few basic definitions

We'll study subgroups in Chapter 3, but it's helpful to formally define this concept now.

Definition

A subgroup of G is a subset $H \subseteq G$ that is also a group. We denote this by $H \leq G$.

Definition

The order of a group G is its size as a set, denoted by |G|.

Definition

The order of an element $g \in G$ is $|g| := |\langle g \rangle|$, i.e., either

- the minimal $k \ge 1$ such that $g^k = e$, or
- ∞ , if there is no such *k*.

A few basic definitions

The complex numbers are the set

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}, \quad \text{where } i^2 = -1.$$

By Euler's identity, $e^{i\theta} = \cos \theta + i \sin \theta$ lies on the unit circle.

From this, we get the polar form:

$$z = a + bi = Re^{i\theta}$$
, $\tan \theta = b/a$.

The norm of
$$z \in \mathbb{C}$$
 is $|z| := R = \sqrt{a^2 + b^2}$.

Remark

If two complex numbers are multiplied, their lengths multiply and their angles add.

$$z_1 = R_1 e^{\theta_1}, \quad z_2 = R_2 e^{\theta_2} \implies z_1 z_2 = (R_1 e^{i\theta_1})(R_2 e^{i\theta_2}) = R_1 R_2 e^{i(\theta_1 + \theta_2)}.$$

Review of complex numbers

The complex conjugate of $z = Re^{i\theta} = a + bi$ is

$$\overline{z} = Re^{-i\theta} = a - bi,$$

which is the reflection of z across the real axis.

Note that

$$|z|^2 = z \cdot \overline{z} = Re^{i\theta}Re^{-i\theta} = R^2e^0 = R^2 \implies |z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2} = R.$$

Roots of unity

The polynomial $f(x) = x^n - 1$ has *n* distinct roots, and they lie on the unit circle.

Definition

For $n \ge 1$, the *n*th roots of unity are the *n* roots of $f(x) = x^n - 1$, i.e.,

$$U_n := \{\zeta_n^k \mid k = 0, \dots, n-1, \zeta_n = e^{2\pi i/n}\}.$$

If gcd(n, k) = 1, then ζ_n^k is a primitive n^{th} root of unity.

Remark

The n^{th} roots of unity form a group under multiplication.

A motivating example: the 6^{th} roots of unity

The $6^{\rm th}$ roots of unity are the roots of the polynomial

$$\begin{aligned} x^{6} - 1 &= (x - 1)(x^{5} + x^{4} + x^{3} + x^{2} + x + 1) \\ &= (x - 1)(x - e^{2\pi i/6})(x - e^{4\pi i/6})(x - e^{6\pi i/6})(x - e^{8\pi i/6})(x - e^{10\pi i/6}) \\ &= (x - 1)(x + 1)(x^{2} + x + 1)(x^{2} - x + 1) \\ &= \Phi_{1}(x)\Phi_{2}(x)\Phi_{3}(x)\Phi_{6}(x) \end{aligned}$$

• $\zeta^0 = e^{0\pi i/6} = 1$: primitive 1st root of unity • $\zeta^1 = e^{2\pi i/6} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$: primitive 6th root of unity • $\zeta^2 = e^{4\pi i/6} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$: primitive 3rd root of unity • $\zeta^3 = e^{6\pi i/6} = -1$: primitive 2nd root of unity • $\zeta^4 = e^{8\pi i/6} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$: primitive 3rd root of unity • $\zeta^5 = e^{10\pi i/6} = \frac{1}{2} - \frac{\sqrt{3}}{2}i$: primitive 6th root of unity

Do you see how this generalizes for arbitrary n?

Cyclotomic polynomials

The *n*th cyclotomic polynomial is
$$\Phi_n(x) := \prod_{\substack{0 \le k < n \\ \gcd(n,k)=1}} (x - e^{2\pi i k/n}) = \prod_{\substack{0 \le k < n \\ \gcd(n,k)=1}} (x - \zeta_n^k).$$

That is, its roots are precisely the primitive n^{th} roots of unity.

An important fact from number theory is that $\Phi_d(x)$ is irreducible and $x^n - 1 = \prod_{0 < d \mid n} \Phi_d(x)$.

Primitive d^{th} roots of unity: $\{\zeta^k \mid \gcd(n, k) = n/d\}$.

ζ⁶ <mark>+</mark>

57

Reflection matrices

The roots of unity are convenient for representing rotations, but not reflections.

A 2 \times 2 real-valued matrix A is a linear transformation

$$A \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \qquad \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}.$$

A reflection across the x-axis (i.e., $v \in V_4$) is the map $(x, y) \mapsto (x, -y)$.

A reflection across the y-axis (i.e., $h \in V_4$) is the map $(x, y) \mapsto (-x, y)$.

In matrix form, these are

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ -y \end{bmatrix}, \qquad \qquad \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ y \end{bmatrix}.$$

Multiplying these matrices in either order is -I, which is the map $(x, y) \mapsto (-x, -y)$:

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ -y \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

Mathematically, this is a representation of the group V_4 :

$$V_4 \cong \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}.$$

Rotation matrices

For $\theta \in [0, 2\pi)$, the rotation matrix

$$A_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

is a counterclockwise rotation of \mathbb{R}^2 about the origin by θ .

Rotating by θ_1 and then by θ_2 is a rotation by $\theta_1 + \theta_2$. Algebraically,

$$A_{\theta_1}A_{\theta_2}=A_{\theta_1+\theta_2}.$$

Recall that multiplication by $e^{2\pi i/n}$ is a counterclockwise rotation of $2\pi/n$ radians in \mathbb{C} . In terms of matrices, this is multiplication by

$$A_{2\pi/n} = \begin{bmatrix} \cos(2\pi/n) & -\sin(2\pi/n) \\ \sin(2\pi/n) & \cos(2\pi/n) \end{bmatrix}$$

We can also represent rotations with complex matrices:

$$R_n := \begin{bmatrix} e^{2\pi i/n} & 0\\ 0 & e^{-2\pi i/n} \end{bmatrix} = \begin{bmatrix} \zeta_n & 0\\ 0 & \overline{\zeta}_n \end{bmatrix}.$$