Visual Algebra

Lecture 2.3: Dihedral groups

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

Definition

The dihedral group D_n is the group of symmetries of a regular *n*-gon. It has order 2n.

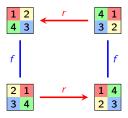
One possible choice of generators is

- 1. $r = \text{counterclockwise rotation by } 2\pi/n$ radians,
- 2. f = flip across a fixed axis of symmetry.

Using these generators, one (of many) ways to write the elements of $D_n = \langle r, f \rangle$ is

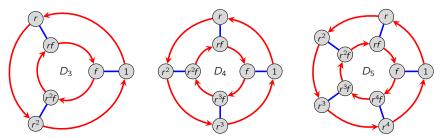
$$D_n = \left\{\underbrace{1, r, r^2, \dots, r^{n-1}}_{n \text{ rotations}}, \underbrace{f, rf, r^2 f, \dots, r^{n-1} f}_{n \text{ reflections}}\right\}.$$

It is easy to check that $rf = fr^{-1}$:



Several different presentations for D_n are:

$$D_n = \langle r, f \mid r^n = 1, f^2 = 1, rfr = f \rangle = \langle r, f \mid r^n = 1, f^2 = 1, rf = fr^{n-1} \rangle.$$



Warning!

Many books denote the symmetries of the *n*-gon as D_{2n} .

A strong advantage to our convention is that we can write

$$C_n = \langle r \rangle = \left\{ 1, r, r^2, \dots, r^{n-1} \right\} \le \langle r, f \rangle = D_n.$$

Another canonical way to generate D_n is with two reflections:

■ *s* := *f*

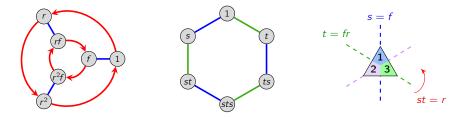
 $\bullet t := fr = r^{n-1}f$

Composing these in either order is a rotation of $2\pi/n$ radians:

$$st = f(fr) = r$$
, $ts = (fr)f = (r^{n-1}f)f = r^{n-1}$.

A group presentation with these generators is

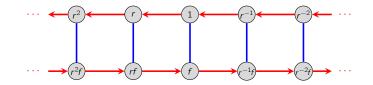
$$D_n = \langle s, t \mid s^2 = 1, t^2 = 1, (st)^n = 1 \rangle = \{\underbrace{1, st, ts, (st)^2, (ts)^2, \ldots}_{\text{rotations}}, \underbrace{s, t, sts, tst, \ldots}_{\text{reflections}}\}.$$



Definition

The infinite dihedral group, denoted D_{∞} , has presentation

$$D_{\infty} = \langle r, f \mid f^2 = 1, rfr = f \rangle.$$



We can also generate D_{∞} with two reflections, s := f and t = fr.

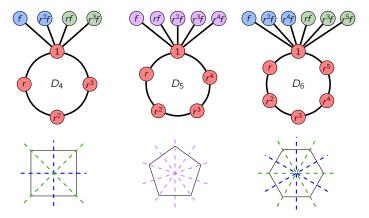
$$D_{\infty} = \langle s, t \mid s^{2} = 1, t^{2} = 1 \rangle = \{\underbrace{1, st, ts, (st)^{2}, (ts)^{2}, \dots, }_{\text{"rotations"}} \underbrace{s, t, sts, tst, \dots}_{\text{"reflections"}} \}.$$

Cycle graphs of dihedral groups

The maximal orbits of D_n consist of

- 1 orbit of size *n* containing $\{1, r, ..., r^{n-1}\}$;
- *n* orbits of size 2 containing $\{1, r^k f\}$ for k = 0, 1, ..., n 1.

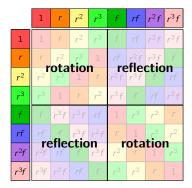
Unless n is prime, the size-n orbit will have smaller subsets that are orbits.



Cayley tables of dihedral groups

The separation of D_n into rotations and reflections is visible in its Cayley tables.

	1	r	r ²	r ³	f	rf	r²f	r³f
1	1	r	<i>r</i> ²	r ³	f	rf	r²f	r ³ f
r	r	<i>r</i> ²	<i>r</i> ³	1	rf	r²f	r³f	f
<i>r</i> ²	<i>r</i> ²	<i>r</i> ³	1	r	r²f	r³f	f	rf
<i>r</i> ³	r ³	1	r	r ²	r³f	f	rf	r ² f
f	f	r³f	r²f	rf	1	r ³	r ²	r
rf	rf	f	r³f	r²f	r	1	r ³	r^2
<i>r</i> ² <i>f</i>	r²f	rf	f	r³f	<i>r</i> ²	r	1	<i>r</i> ³
r ³ f	r ³ f	r²f	rf	f	<i>r</i> ³	r ²	r	1



The partition of D_n as depicted above has the structure of group C_2 .

"Shrinking" a group in this way is called a quotient.

It yields a group of order 2 with the following Cayley table:

Representations of dihedral groups

Recall that the Klein 4-group can be represented by

$$V_4 \cong \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}.$$

Moreover, a rotation of $2\pi/n$ radians can be

$$A_{2\pi/n} = \begin{bmatrix} \cos(2\pi/n) & -\sin(2\pi/n) \\ \sin(2\pi/n) & \cos(2\pi/n) \end{bmatrix} \quad \text{or} \quad R_n := \begin{bmatrix} e^{2\pi i/n} & 0 \\ 0 & e^{-2\pi i/n} \end{bmatrix} = \begin{bmatrix} \zeta_n & 0 \\ 0 & \overline{\zeta}_n \end{bmatrix}.$$

The canonical real representation of D_n with 2×2 matrices is

$$D_n \cong \left\langle \begin{bmatrix} \cos(2\pi/n) & -\sin(2\pi/n) \\ \sin(2\pi/n) & \cos(2\pi/n) \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\rangle.$$

The canonical complex representations of D_n with 2×2 matrices is

$$D_n \cong \left\langle \begin{bmatrix} e^{2\pi i/n} & 0\\ 0 & e^{-2\pi i/n} \end{bmatrix}, \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \zeta_n & 0\\ 0 & \overline{\zeta}_n \end{bmatrix}, \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} \right\rangle.$$

Viewing the groups C_n and D_n as matrices makes our choice of calling the dihedral group D_n (rather than D_{2n}) much more natural!