Visual Algebra

Lecture 2.5: Groups of permutations

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

Groups of permutations

Loosely speaking, a permutation is an action that rearranges a set of objects.

Definition

Let X be a set. A permutation of X is a bijection $\pi: X \to X$.

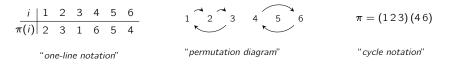
Definition

The permutations of a set X form a group that we denote S_X or Perm(S). The special case when $X = \{1, ..., n\}$ is called the symmetric group, denoted S_n .

If |X| = |Y|, then $S_X \cong S_Y$, so we'll usually work with S_n , which has order $n! = n(n-1)\cdots 2 \cdot 1$.

There are several notations for permutations, each with their strengths and weaknesses.

This is best seen with an example:



Permutation notations

One-line notation: $\pi = 231654$. $\sigma = 564123$

Pros

concise

Permutation diagram:

nice visualization of rearrangement

Cons.

- bad for combining permutations not clear where elements get mapped hard to compute the inverse σ : π : 5 2 Cons: can see where elements get mapped cumbersome to write easy to compute inverses can get tangled
- convenient for combining permutations

Cycle notation: $\pi = (123)(46), \quad \sigma = (152634);$

Pros:

Pros:

- short and concise
- easy to see the disjoint cycles
- convenient for combining permutations

Cons:

- representation isn't unique
- not clear what n is

Cycle notation

The cycle (1465) means

"1 goes to 4, which goes to 6, which does to 5, which goes back to 1."

Thus, we can write (1465) = (4651) = (6514) = (5146).

To find the inverse of a cycle, write it backwards:

$$(1465)^{-1} = (5641) = (1564) = \cdots$$

Though it's not necessary, we usually prefer to begin a cycle with its smallest number.

Remark

Every permutation in S_n can be written in cycle notation as a product of disjoint cycles, and this is unique up to commuting and cyclically shifting cycles.

For example, consider the following permutation in S_{10} :

$$1 + 2 + 3 + 5 + 6 + 7 + 8 + 9 + 10 = 10$$
 as $(1 + 6 + 5)(2 + 3)(8 + 10 + 9)$.

This is a product of four disjoint cycles. Since they are disjoint, they commute:

 $(1465)(23)(8\ 10\ 9) = (23)(8\ 10\ 9)(1465) = (23)(8\ 10\ 9)(1465) = \cdots$

Composing permutations

Remark

The order of a permutation is the least common multiple of the sizes of its disjoint cycles.

For example, $(1 3 8 6)(2 9 7 4 10 5) \in S_{10}$ has order 12; this should be intuitive.

When cycles are not disjoint, order matters.

Many books compose permutations from right-to-left, due to function composition.

Since we have been using right Cayley graphs, we will compose them from left-to-right.

Notational convention

Composition of permutations will be done left-to-right. That is, given $\pi, \sigma \in S_n$,

 $\pi\sigma$ means "do π , then do σ ".

The main drawback about our convention is that it does not work well with function notation applied to elements, like $\pi(i)$.

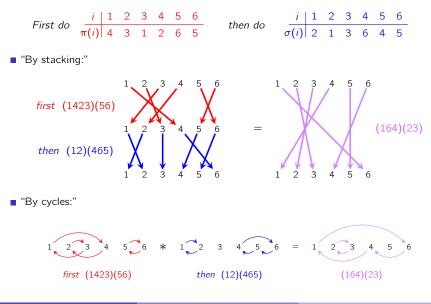
For example, notice that

$$(\pi\sigma)(i) = \sigma(\pi(i)) \neq \pi(\sigma(i)).$$

However, we will hardly ever use this notation, so that drawback is minimal.

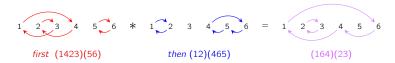
Composing permutations

Here are two ways illustrating how permutations are composed, with the example



Composing permutations in cycle notation

Let's practice composing two permutations:



Let's now do that in slow motion.

In the example above, we start with 1 and then read off:

" "1 goes to 4, then 4 goes to 6";	Write: (1 6
■ "6 goes to 5, then 5 goes to 4";	Write: (1 6 4
■ "4 goes to 2, then 2 goes to 1";	Write: $(1 6 4)$, and start a new cycle.
■ "2 goes to 3, then 3 is fixed";	Write: (1 6 4) (2 3
■ "3 goes to 1, then 1 goes to 2";	Write: $(1 6 4) (2 3)$, and start a new cycle.
"5 goes to 6, then 6 goes to 5";	Write: (1 6 4) (2 3) (5); now we're done.

We typically omit 1-cycles (fixed points), so the permutation above is just $(1 \ 6 \ 4) \ (2 \ 3)$.

Permutation matrices

We have seen how to represent groups of symmetries such as V_4 , C_n , and D_n as matrices. Permuting coordinates of \mathbb{R}^n is also a linear transformation.

Every permutation can represented by an $n \times n$ permutation matrix, P_{π} .

For an example of this, consider the following permutation $\pi \in S_5$:

$$\frac{i}{\pi(i)} \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{vmatrix} \qquad 1 2 3 4 5 \qquad \pi = (132)(45)$$

The matrix P_{π} permutes the entries of a colum vector:

$$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} x_3 \\ x_1 \\ x_2 \\ x_5 \\ x_4 \end{bmatrix}$$

It permutes the entries of a row vector (by coordinates):

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} x_2 & x_3 & x_1 & x_5 & x_4 \end{bmatrix}.$$

Permutation matrices

Definition

Given an element $\pi \in S_n$, the corresponding permutation matrix is the $n \times n$ matrix

$$P_{\pi} = (p_{ij}), \qquad p_{ij} = \begin{cases} 1 & \pi(i) = j \\ 0 & \text{otherwise.} \end{cases}$$

Here are several more examples of permutation matrices.

$$P_{(12)(34)} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \qquad P_{(134)} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \qquad P_{(1234)} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Notice that the difference between left and right multiplication is:

 $P_{\pi}P_{\sigma}x$ Right-to-left: "Start with x, apply σ , then π " $x^T P_{\pi}P_{\sigma}$ Left-to-right: "Start with x^T , apply π , then σ "

It does not matter whether we use row or column vectors, but we must be careful.

- Column vectors correspond to multiplying right-to-left, as in function composition.
- Row vectors correspond to multiplying left-to-right, which has been our standard.

Our left-to-right multiplication convention is more compatible with row vectors

$$P_{(12)}P_{(23)}\mathbf{v} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = P_{(132)}\mathbf{v}.$$

$$\mathbf{v}^T P_{(12)}P_{(23)} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} x_2 & x_3 & x_1 \end{bmatrix} = \mathbf{v}^T P_{(132)}.$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \\ x_1 \\ x_1 \\$$

(13

((:

 $\begin{bmatrix} x_3\\ x_2 \end{bmatrix}$

 $[x_3 x_2 x_1]$

Cayley's theorem

A set of permutations that forms a group is called a permutation group.

A fundamental theorem by British mathematician Arthur Cayley (1821–1895) says that every finite group can be thought of as a collection of permutations.

This is clear for groups of symmetries like V_4 , C_n , or D_n , but less so for groups like Q_8 .

Cayley's theorem

Every finite group is isomorphic to a collection of permutations, i.e., some subgroup of S_n .

We don't have the mathematical tools to prove this, but we'll get a 1-line proof when we study group actions.

A natural first question to ask is the following:

Given a group, how do we associate it with a set of permutations?

We'll see two algorithms which give strong intuition for why Cayley's theorem is true.

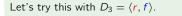
Constructing permutations from a Cayley graph

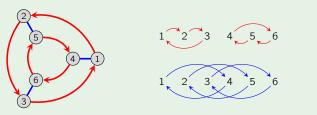
Here is an algorithm given a Cayley graph with *n* nodes:

- 1. number the nodes 1 through *n*,
- 2. interpret each arrow type in the Cayley graph as a permutation.

Take the permutations corresponding to the generators.

Example





We see that D_3 is isomorphic to the subgroup $\langle (123)(465), (14)(25)(36) \rangle$ of S_6 .

Constructing permutations from a Cayley table

Here is an algorithm given a Cayley table with n elements:

- 1. replace the table headings with 1 through n,
- 2. make the appropriate replacements throughout the rest of the table,
- 3. interpret each row (or column) as a permutation.

Take the permutations corresponding to any generating set.

Example

Let's try this with the Cayley table for $D_3 = \langle \mathbf{r}, \mathbf{f} \rangle$.

We see that D_3 is isomorphic to the subgroup $\langle (123)(456), (14)(26)(35) \rangle$ of S_6 .