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Groups of permutations

Loosely speaking, a permutation is an action that rearranges a set of objects.

Definition
Let X be a set. A permutation of X is a bijection m: X — X.

Definition
The permutations of a set X form a group that we denote Sx or Perm(S). The special
case when X = {1, ..., n} is called the symmetric group, denoted Sj.

If |X| = |Y], then Sx = Sy, so we'll usually work with S,, which has order
nt=n(n—-1)---2-1.

There are several notations for permutations, each with their strengths and weaknesses.

This is best seen with an example:

; —~ —~
i1 23 456 17273 475 6 7= (123)(46)
m)l2 3 1 6 5 4 ~ ~
“permutation diagram” "“cycle notation”

“one-line notation”
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Permutation notations

One-line notation: 7 = 231654, o = 564123

Pros: Cons:
m concise m bad for combining permutations
m nice visualization of rearrangement m not clear where elements get mapped

m hard to compute the inverse

Permutation diagram: 7 1 2 3 4 5 6 o1 2 3 4 5 6
~— NN S
Pros: Cons:
m can see where elements get mapped m cumbersome to write
m easy to compute inverses m can get tangled

m convenient for combining permutations

Cycle notation: 7 = (123)(46), oc=(152634);

Pros: Cons:
m short and concise m representation isn’t unique
m easy to see the disjoint cycles m not clear what n is

m convenient for combining permutations
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Cycle notation
The cycle (1465) means

"1 goes to 4, which goes to 6, which does to 5, which goes back to 1.”
Thus, we can write (1465) =(4651) =(6514) =(5146).
To find the inverse of a cycle, write it backwards:
(1465)1 =(5641) = (1564)=---
Though it's not necessary, we usually prefer to begin a cycle with its smallest number.

Remark

Every permutation in S, can be written in cycle notation as a product of disjoint cycles,
and this is unique up to commuting and cyclically shifting cycles.

For example, consider the following permutation in Sig:

1@&/* T8 9 10 as (1465)(23)(8109).

This is a product of four disjoint cycles. Since they are disjoint, they commute:

(1465) (23) (8 10 9) = (23) (8 10 9) (1465) = (23) (8 10 9) (1465) = - - -
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Composing permutations

The order of a permutation is the least common multiple of the sizes of its disjoint cycles.

Remark J

For example, (1386)(297 4 105) € Sig has order 12; this should be intuitive.
When cycles are not disjoint, order matters.
Many books compose permutations from right-to-left, due to function composition.

Since we have been using right Cayley graphs, we will compose them from left-to-right.

Notational convention

Composition of permutations will be done left-to-right. That is, given 7,0 € S,

mo means “do m, then do o”.

The main drawback about our convention is that it does not work well with function
notation applied to elements, like (/).

For example, notice that
(mo)(i) = o(m(i)) # m(a(i)).

However, we will hardly ever use this notation, so that drawback is minimal.
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Composing permutations

Here are two ways illustrating how permutations are composed, with the example

i|1 23456
74 3 1 2 6 5

i|1 23 456
o2 1 3 6 4 5

First do then do

m "By stacking:”

4 5 6
first (1423)(56) X

-
N
w
=

1 2 3 4 5 6 = (164)(23)
then (12)(465) X l N
1 2 3 4 5 6 1
m "By cycles:”
//—ﬂ\ — — N K an
172773 4 556 % 172 3 4 5 6 = 2 3 5
L ~ e RGP A
first (1423)(56) then (12)(465) (164)(23)
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Composing permutations in cycle notation

Let's practice composing two permutations:

m —~ —~ TN
1 2 3 4 5 6 3k 1 2 3 4 5 6 = 1 2 3 4 5 6
xo” o -~ -~ —
first (1423)(56) then (12)(465) (164)(23)

Let's now do that in slow motion.

In the example above, we start with 1 and then read off:

m "1 goes to 4, then 4 goes to 6"; Write: (16

m "6 goes to 5, then 5 goes to 4”; Write: (164

m "4 goes to 2, then 2 goes to 17 Write: (1 6 4), and start a new cycle.

m "2 goes to 3, then 3 is fixed"; Write: (164) (23

m "3 goes to 1, then 1 goes to 2"; Write: (1 64) (2 3), and start a new cycle.
m "5 goes to 6, then 6 goes to 5”; Write: (1 64)(23) (5); now we're done.

We typically omit 1-cycles (fixed points), so the permutation above is just (1 6 4) (2 3).
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Permutation matrices

We have seen how to represent groups of symmetries such as Vi, C,, and D, as matrices.

Permuting coordinates of R” is also a linear transformation.

Every permutation can represented by an n X n permutation matrix, Px.

For an example of this, consider the following permutation m € Ss:
li ‘ 1 2 3 4 5 7\ 4A5

. 17 2 3
)3 1 2 5 4 L ~

T =(132)(45)

The matrix Py permutes the entries of a colum vector:

0o 0o 1 0 0] [« X3
1 0 0 0 0 X2 X1
0 1 0 0 0 Bl =1 X0,
0 0 0 0 1 X4 X5
0 0 0 1 0 X5 X4

It permutes the entries of a row vector (by coordinates):

o
o

[ 2 x3 xa X X1 X5  Xa].

ocor o
oo oor
= ooo
o+~ oo

I

—

o

X

1
0
0
0
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Permutation matrices

Definition
Given an element w € S;,, the corresponding permutation matrix is the n X n matrix
1 w(i)=J
Pr = (p;), J—
~ = (Py) Py {0 otherwise.
Here are several more examples of permutation matrices.
0O 1 0 O 0 0 1 O 0O 1 0 O
P |1 0 0 O P_OlOO P_OOlO
@Y~ 1o o o 1|’ @) =10 0o o 1|’ =)= 1o 0o 0 1
0 0 1 0o 1 0 0 O 1 0 0 O
Notice that the difference between left and right multiplication is:
PrPsx Right-to-left: “Start with x, apply o, then 7"
xT PrPs Left-to-right: “Start with xT, apply 7, then o”

It does not matter whether we use row or column vectors, but we must be careful.

m Column vectors correspond to multiplying right-to-left, as in function composition.

m Row vectors correspond to multiplying left-to-right, which has been our standard.
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Our left-to-right multiplication convention is more compatible with row vectors

0 1 0ff1
P(12) P(23)V = |1 0 0 0

0 0 1|0
VTP(12) P(23) = [Xl X2 X3] 1

Ss = ((12),(23))

right Cayley graph

X2

M. Macauley (Clemson)

o

0 X1

1 X2 | =
X3

1 0ff1 O

0 0|0 O

0 110 1

T F(a(2)) # (Fa)(x)

“swap numbers”

N1
;)

Lecture 2.5: Groups of permutations

0 1 X1 X3
0 O X2 = | X1| = P(132)V.
1 0 X3 X2
0 0 0 1
1| = [Xl X2 X3] 1 0 0
0 0 1 0
=[e xs xi] =vT Py
[x1 x2 x3]
x PN
x3 [x2 x1 x3] [x1 x3 %]
X2
(()F)g = (x)(f9)
“swap coordinates’
X2
X3 [x2 x3 x1] [x3 x1 xo]
x1

[x3 x2 x1]
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Cayley's theorem

A set of permutations that forms a group is called a permutation group.

A fundamental theorem by British mathematician Arthur Cayley (1821-1895) says that
every finite group can be thought of as a collection of permutations.

This is clear for groups of symmetries like V4, C,, or Dy, but less so for groups like Qs.

Every finite group is isomorphic to a collection of permutations, i.e., some subgroup of S,.

Cayley's theorem J

We don’t have the mathematical tools to prove this, but we'll get a 1-line proof when we
study group actions.

A natural first question to ask is the following:

Given a group, how do we associate it with a set of permutations?

We'll see two algorithms which give strong intuition for why Cayley's theorem is true.
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Constructing permutations from a Cayley graph

Here is an algorithm given a Cayley graph with n nodes:
1. number the nodes 1 through n,

2. interpret each arrow type in the Cayley graph as a permutation.

Take the permutations corresponding to the generators.

Example
Let's try this with D3 = (r, f).

(5) 17 2°3 45

(9)—(D)
(6) 17 20 374 5 6
©,

We see that Ds is isomorphic to the subgroup ((123)(465), (14)(25)(36)) of Se.
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Constructing permutations from a Cayley table

Here is an algorithm given a Cayley table with n elements:
1. replace the table headings with 1 through n,
2. make the appropriate replacements throughout the rest of the table,
3. interpret each row (or column) as a permutation.

Take the permutations corresponding to any generating set.

Example
Let's try this with the Cayley table for D3 = (r, f).

Row1(l): 1 2 3 4 5 6
Row 2 (r):
Row 3 (r?):
Row 4 (f):
Row 5 (rf):

Row 6 (r%f):

We see that Ds is isomorphic to the subgroup {(123)(456), (14)(26)(35)) of Ss.
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