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The symmetric group

Recall that the symmetric group Sn is the group of all n! permutations of {1, . . . , n}.

If we number the corners of an n-gon, every symmetry canonically defines a permutation.

However, not every permutation of the corners necessarily is a symmetry, unless n = 3.

Indeed, every permutation of {1, 2, 3} can be realized as an element of D3.
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Remark
The groups Dn and Sn are isomorphic for n = 3, and non-isomorphic if n > 3.
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The symmetric group
Instead of using configurations of the triangle, consider rearrangements of numbers:{

123, 132, 213, 231, 312, 321
}
.

Clearly, S3 canonically rearranges these configurations.

However, there are two perfectly acceptable interpretations for “canonical.”

For example, (12) can be interpreted to mean

“swap the numbers in the 1st and 2nd coordinates.”

Alternatively, (12) could mean

“swap the numbers 1 and 2, regardless of where they are.”
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S3 =
〈
(12), (23)

〉
right Cayley graph
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Later, we will understand this difference as a left group action vs. a right group action.
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Transpositions

A transposition is a permutation that swaps two objects and fixes the rest, e.g.:

τ = (i j): 1 2 · · · i − 1 i i+1 · · · j−1 j j+1 · · · n−1 n

An adjacent transposition is one of the form (i i+1).

The following result should be intuitive, if one thinks about rearranging n objects in a row.

Remark
There are three canonical types of generating sets for Sn:

A transposition and an n-cycle, e.g.,:

Sn =
〈
(1 2), (1 2 · · · n−1 n)

〉
.

Adjacent transpositions:

Sn =
〈
(1 2), (2 3), . . . , (n − 1 n)

〉
.

Overlapping transpositions:

Sn =
〈
(1 2), (1 3), . . . , (1 n)

〉
.
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Polytopes and platonic solids

A polytope is a finite region of Rn enclosed by finitely many hyperplanes.

2D polytopes are polygons, and 3D polytopes are polyhedra.

The formal definition of a regular polytope involves a technical condition of its symmetry
group.

Informally, it means all faces and all vertices are identical and indistinguishable –
higher-dimensional analogues of regular polygons.

There are exactly five regular polyhedra, called Platonic solids.
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Archimedean solids

More general than the Platonic solids are the Archimedean solids.

These are non-regular convex uniform polyhedra built from regular polygons.

Though they can involve different polygons, all vertices are locally identical.

In the third century B.C.E., Archimedes classified all 13 such polyhedra.

Five are “truncated versions” of the Platonic solids – formed by chopping off vertices.

The others consist of

the chiral “snub cube” and “snub dodecahedron”

“hybrids” such as the icosidodecahedron

truncated versions of these hybrids.

The Cayley graph of S4 can be arranged on the skeletons of several of these.
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The left and right permutahedra

Definition
The (right) n-permutahedron is the convex hull of the n! permutations of (1, . . . , n) ∈ Rn.

This is an (n − 1)-dimensional polytope, as it lies on the hyperplane x1 + · · ·+ xn =
(n−1)n

2 .
It is also the (right) Cayley graph of

S4 =
〈
(12), (23), (34)

〉
.
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Even and odd permutations

Remark
Even though every permutation in Sn can be written as a product of transpositions, there
may be many ways to do this.

For example: (132) = (12)(23) = (12)(23)(23)(23) = (12)(23) (12) (12).

Proposition
The parity of the number of transpositions of a fixed permutation is unique.

Definition
An even permutation in Sn can be written with an even number of transpositions. An odd
permutation requires an odd number.

Remark
The product of:

two even permutations is even

two odd permutations is even

an even an an odd permutation is odd.
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The alternating groups

Definition
The set of even permutations in Sn is the alternating group, denoted An.

Proposition

Exactly half of the permutations in Sn are even, and so |An| = n!
2 .

Rather than prove this using (messy) elementary methods now, we’ll wait until we see the
isomorphism theorems to get a 1-line proof.

Here are Cayley graphs for A4 on a truncated tetrahedron and cuboctahedron.

x

b

c2

e

a2

a

d2

z
c

b2

d y

M. Macauley (Clemson) Lecture 2.6: Symmetric and alternating groups Visual Algebra 10 / 16

mailto:macaule@clemson.edu


The appearance of A4 in Cayley graphs for S4

Let’s highlight in yellow the even permutations in Cayley graphs for S4.

e

S4 =
〈
(12), (23), (34)

〉

truncated octahedron; “permutahedron”

e

S4 =
〈
(12), (13), (14)

〉

“Nauru graph”

Notice that any two paths between yellow nodes has even length.
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The appearance of A4 in Cayley graphs for S4
There are only five cycle types in S4:

example element e (12) (234) (1234) (12)(34)
parity even odd even odd even
# elts 1 6 8 6 3

In both Cayley graphs, blue arrows flip the sign of the permutation; red arrows do not.

Once again, even permutations are highlighted in yellow.

e

truncated cube

e

rhombicuboctahedron
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The cycle graph of S4

e

(123) (124) (134) (234) (12)(34) (13)(24) (14)(23) (132)(142)(143)(243)

(1324) (1423) (1234) (1432) (1243) (1342)

(12) (34) (13) (24) (23) (14)
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A very important group
The group A5 has special properties that we will learn about later.

Here is the Cayley graph of A5 =
〈
(12345), (12)(34)

〉
on a truncated icosahedron.
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More Cayley graphs on Platonic solids
Images from Wedd’s List: https://weddslist.com/groups/cayley-plat/
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Symmetry groups of Platonic solids

Two-dimensional regular polytopes have rotation groups (Cn) and symmetry groups (Dn).

3D regular polytopes (Platonic solids) have these as well.

solid rotation group symmetry group
Tetrahedron A4 S4
Cube S4 S4 × C2
Octahedron S4 S4 × C2

Icosahedron A5 A5 × C2
Dodecahedron A5 A5 × C2

There are higher-dimensional versions of the tetrahedron and cube, and their symmetry
groups are Sn, and a group we haven’t yet seen called Sn o C2 (the “signed permutations”).
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