Visual Algebra

Lecture 2.7: Dicyclic and diquaternion groups

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences
Clemson University
South Carolina, USA
http://www.math.clemson.edu/~macaule/

Generalizing the quaternion group

The quaternion group Q_8 is generated by:

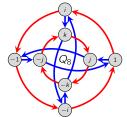
- lacksquare a 4th root of unity, $i=\zeta_4=e^{2\pi i/4}$ (2 π /4-rotation)
- \blacksquare the "imaginary number" j

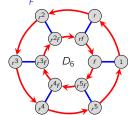
$$Q_8 = \langle i, j, k \rangle \cong \left\langle \underbrace{\begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}}_{R=R_4}, \underbrace{\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}}_{S}, \underbrace{\begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}}_{T=RS} \right\rangle.$$

The dihedral group is generated by

- an n^{th} root of unity, $r = \zeta_n = e^{2\pi i/n}$ ($2\pi/n$ -rotation)
- \blacksquare a reflection f

$$D_n = \langle r, f \rangle \cong \left\langle \underbrace{\begin{bmatrix} \zeta_n & 0 \\ 0 & \overline{\zeta}_n \end{bmatrix}}_{P_n}, \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{F_n} \right\rangle$$



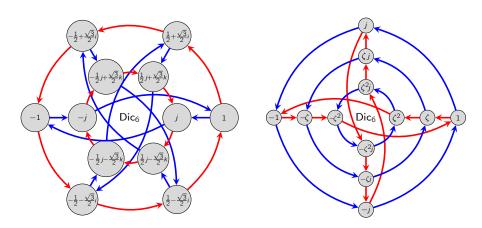


The dicyclic groups

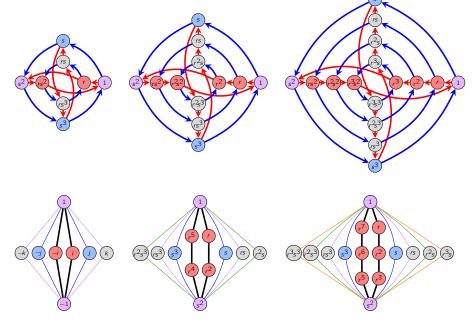
When n is even, we can replace ζ_4 with ζ_n in Q_8 to get the **dicyclic group**

$$\operatorname{Dic}_n = \left\langle \zeta_n, j \right\rangle \cong \left\langle \begin{bmatrix} \zeta_n & 0 \\ 0 & \overline{\zeta}_n \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right\rangle \cong \left\langle r, s \mid r^n = s^4 = 1, \ r^{n/2} = s^2, \ rsr = s \right\rangle.$$

The multiplication rules ij = k and ji = -k remain unchanged.



The dicyclic groups

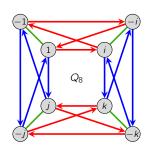


A quotient of the dicyclic group Dic4

The quaternion group is $Q_8 = \langle \zeta_4, j \rangle = \{\pm 1, \pm i, \pm j, \pm k\} = \text{Dic}_4$.

Recall how we constructed a quotient of Q_8 , which was

$$Q_8/\langle -1 \rangle \cong V_4$$
.



		1	-1	i	-i	j	-ј	k	-k
	1	1	-1	i	-i	j	-ј	k	-k
	-1	-1	1	-i	i	-j	j	-k	k
	i	i	-i	-1	1	k	-k	- ј	j
	-i	-i	i	1	-1	-k	k	j	-j
	j	j	<i>−j</i>	-k	k	-1	1	i	-i
	-j	-j	j	k	-k	1	-1	-i	i
	k	k	-k	j	-j	-i	i	-1	1
	-k	-k	k	-ј	j	i	-i	1	-1

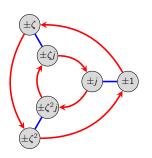
	± 1	±i	±j	$\pm k$	
±1	±1	±i	±j	±k	
±i	±i	±1	±k	±j	
±j	±j	±k	± 1	±i	
$\pm k$	$\pm k$	±j	±i	± 1	

We can do a similar construction for dicyclic groups.

Note that $V_4 \cong D_2 = \langle r, f \mid r^2 = 1, f^2 = 1, rfr = f \rangle$.

A quotient of the dicyclic group D_n

The quotient of the dicyclic group ${\sf Dic}_6$ by $\langle -1 \rangle = \{1,-1\}$ is ${\sf Dic}_6 \ / \langle -1 \rangle \cong {\it D}_3.$



	±1	$\pm \zeta$	$\pm \zeta^2$	±j	±ζj	$\pm \zeta^2 j$
±1	±1	$\pm \zeta$	$\pm \zeta^2$	±j	±ζj	$\pm \zeta^2 j$
$\pm \zeta$	$\pm \zeta$	$\pm \zeta^2$	±1	±ζj	$\pm \zeta^2 j$	±j
$\pm \zeta^2$	$\pm \zeta^2$	±1	$\pm \zeta$	$\pm \zeta^2 j$	±j	±ζj
	±j					
	$\pm \zeta j$					
$\pm \zeta^2 j$	$\pm \zeta^2 j$	±ζj	±j	$\pm \zeta^2$	$\pm \zeta$	±1

The product $(\pm \zeta j) \cdot (\pm \zeta^2 j) = \pm \zeta^2$ means:

"the product of any element in $\{\zeta j, -\zeta j\}$ with any element in $\{\zeta^2 j, -\zeta^2 j\}$ is in $\{\zeta^2, -\zeta^2\}$."

More generally, it will hold that $\operatorname{Dic}_n/\langle -1 \rangle \cong D_{n/2}$.

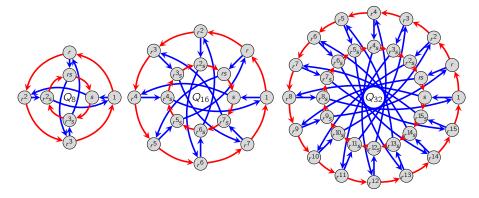
Generalized quaternion groups

When $n = 2^m$, the dicyclic group $Dic_{2^{m-1}}$ is called the generalized quaternion group, Q_{2^n} .

Remark

In a generalized quaternion group $\operatorname{Dic}_n=Q_{2n}$, every nontrivial orbit $\langle g \rangle$ contains $r^{n/2}=-1$.

As we'll see, this gives Q_{2n} certain properties that general dicyclic groups lack.



Recall our standard representations of the quaternion and dihedral groups:

$$Q_{8} = \langle i, j, k \rangle \cong \left\langle \underbrace{\begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}}_{R=R_{4}}, \underbrace{\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}}_{S}, \underbrace{\begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}}_{T=RS} \right\rangle, \quad D_{n} = \langle r, f \rangle \cong \left\langle \underbrace{\begin{bmatrix} \zeta_{n} & 0 \\ 0 & \overline{\zeta}_{n} \end{bmatrix}}_{R_{n}}, \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{F} \right\rangle.$$

Now, consider the group generated by adding the reflection matrix from D_n to Q_8 .

This is the Pauli group on 1 qubit. We will call it the diquaternion group

$$DQ_8 = \langle X, Y, Z \rangle = \{ \pm I, \pm iI, \pm X, \pm iX, \pm Y, \pm iY, \pm Z, \pm iZ \},$$

generated by the Pauli matrices from quantum mechanics and information theory:

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \qquad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

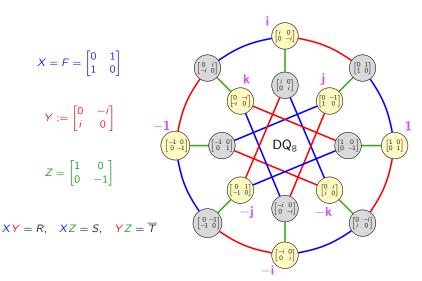
It is easy to check that

$$XY = R$$
 "i", $XZ = S$ "j", $YZ = \overline{T}$ "-k".

This group can be constructed in other ways as well:

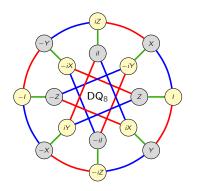
- **a** as a semidirect product, $Q_8 \rtimes_2 C_2$, and $D_4 \rtimes_2 C_2$, and $(C_4 \times C_2) \rtimes_3 C_2$.
- as the "central product" $DQ_8 = C_4 \circ D_4$.

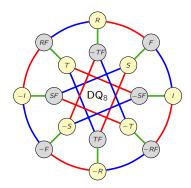
$$DQ_8 = \langle X, Y, Z \mid X^2 = Y^2 = Z^2 = I, (XY)^4 = I, (XY)Z = Z(XY) \rangle$$



The diquaternion group is usually generated with Pauli matrices, $DQ_8 = \langle X, Y, Z \rangle$.

We can also write it as $DQ_8 = \langle R, S, T, F \rangle$ where $Q_8 = \langle R, S, T \rangle$ and $D_n = \langle R_n, F \rangle$.



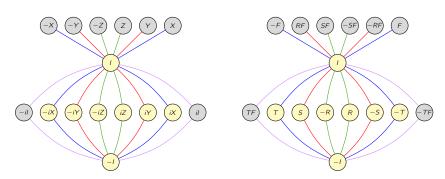


$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \ Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad R = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \ S = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \ T = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}$$

What group do you think the quotient $DQ_8/\langle -1 \rangle$ will be?

Here are two cycle graphs for

$$DQ_8 = \langle X, Y, Z \rangle = \langle R, S, T, F \rangle.$$



$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \ Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \qquad R = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \ S = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \ T = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}$$

Do you see a way to generalize this further? What if we use a different root of unity?

Generalized diquaternion groups

If $n=2^m$, replace $i=\zeta_4=e^{2\pi i/4}$ with $\zeta_n=e^{2\pi i/n}$ to get the generalized diquaternion group.

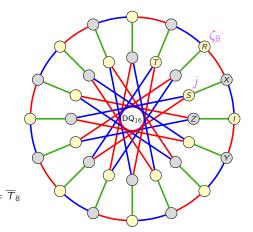
$$\mathsf{DQ}_n := \left\langle \zeta_n, j, \zeta_n j, f \right\rangle \cong \left\langle \underbrace{\begin{bmatrix} \zeta_n & 0 \\ 0 & \overline{\zeta}_n \end{bmatrix}}_{R = R_n}, \underbrace{\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}}_{S}, \underbrace{\begin{bmatrix} 0 & -\zeta_n \\ \overline{\zeta}_n & 0 \end{bmatrix}}_{T = T_n}, \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{F} \right\rangle \cong \mathsf{Dic}_n \rtimes_{\theta} C_2.$$

$$X = F = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$Y := Y_8 = \begin{bmatrix} 0 & \overline{\zeta}_8 \\ \zeta_8 & 0 \end{bmatrix}$$

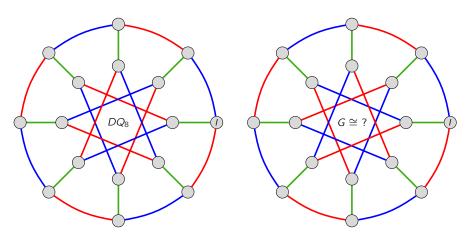
$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$XY_8 = R_8$$
, $XZ = S$, $Y_8Z = \overline{T}_8$



A fun group theory puzzle

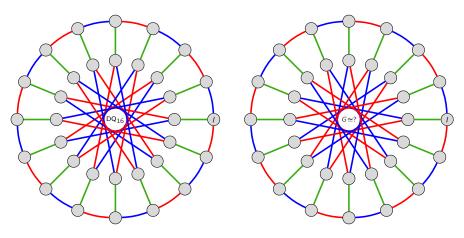
Do you see why these two groups cannot be isomorphic?



So, what group is the one on the right?

A fun group theory puzzle

Do you see why these two groups cannot be isomorphic?



So, what group is the one on the right?