Visual Algebra

Lecture 2.8: Semidihedral and semiabelian groups

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

Generalizing the quaternion group

Last lecture, we started with the quaternion group, and using a dihedral group

we constructed the dicyclic and diquaternion groups:

Generalizing the dihedral groups

We could have constructed the dicyclic groups by starting with a Cayley graph of $D_n = \langle r, f \rangle$.

Then, we could remove the blue arcs and investigate how they can be rewired.

But what if we kept those, but rewired the inner length-n red cycle?

In other words, we want to construct a group G that

- has an element r of order n
- has an element $s \notin \langle r \rangle$ of order 2.

Equivalently, what can we replace the relation $srs = r^{n-1}$ with? That is,

$$G = \langle r, s \mid r^n = 1, s^2 = 1, ??? \rangle.$$

Semidihedral groups

If *n* is a power of 2, we can replace $srs = r^{n-1}$ with $srs = r^{n/2-1}$.

Definition

For each power of two, the semidihedral group of order 2^n is defined by

$$SD_{2^{n-1}} = \langle r, s \mid r^{2^{n-1}} = s^2 = 1, srs = r^{2^{n-2}-1} \rangle.$$

Do you see another way we can rewire these inner red arrows?

Semiabelian groups

Still assuming *n* is a power of 2, let's replace $srs = r^{n/2-1}$ with $srs = r^{n/2+1}$.

Definition

For each power of two, the semiabelian group of order 2^n is defined by

$$SA_{2^{n-1}} = \langle r, s \mid r^{2^{n-1}} = s^2 = 1, srs = r^{2^{n-2}+1} \rangle$$

Do you see another way we can rewire these inner red arrows?

One more rewiring

Of course, there's one more way that we can rewire the dihedral group...

Here is its Cayley graph and cycle graph.

When this group has order 2^n , its presentation is

$$C_{2^{n}-1} \times C_{2} = \langle r, s \mid r^{2^{n-1}} = s^{2} = 1, srs = r \rangle.$$

Remarkably, this and the other three we've seen are the only possibilities:

 $srs = r^{-1}$ (dihedral), $srs = r^{2^{n-2}-1}$ (semidihedral), $srs = r^{2^{n-2}+1}$ (semiabelian).

Dihedral vs. semidihedral vs. semiabelian groups

In other words, there are exactly 4 groups of order 2^n with both:

- an element r of order 2^{n-1}
- an element $s \notin \langle r \rangle$ of order 2.

Let's compare the cycle graphs of the three non-abelian groups from this list:

Remark

The semiabelian group SA_n and the abelian group $C_n \times C_2$ have the same orbit structure!

This surprising fact has profound consequences that we'll see when we study subgroups.

Dihedral vs. semidihedral vs. semiabelian groups

Compare and contrast representations of the dihedral and semidihedral group:

$$D_n \cong \left\langle \begin{bmatrix} \zeta_n & 0 \\ 0 & \overline{\zeta}_n \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\rangle, \qquad \mathsf{SD}_n \cong \left\langle \begin{bmatrix} \zeta_n & 0 \\ 0 & -\overline{\zeta}_n \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\rangle, \qquad \zeta_n = e^{2\pi i/n}$$

Now, compare and contrast those of the abelian and semiabelian group:

$$C_n \times C_2 \cong \left\langle \begin{bmatrix} \zeta_n & 0 \\ 0 & \zeta_n \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\rangle, \qquad \mathsf{SA}_n \cong \left\langle \begin{bmatrix} \zeta_n & 0 \\ 0 & -\zeta_n \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\rangle.$$

Mnemonic: "semi-" = "halfway around unit circle" = $\zeta^{n/2} = -1$.

The groups SD_n and SA_n only exist when $n = 2^m$. In this case, we also have

$$Q_{2^{m+1}} = \mathsf{Dic}_n \cong \left\langle \begin{bmatrix} \zeta_n & 0\\ 0 & \overline{\zeta}_n \end{bmatrix}, \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix} \right\rangle,$$

called the generalized quaternion group.

Note that for any $n \in \mathbb{N}$, the matrices above generate some group.

Exploratory question

What groups do the above representations give if, e.g., n is odd, or not a power of 2?

Non-abelian groups of order 2^n

We'll understand the following better when we study semi-direct products of groups.

Theorem

There are exactly four nonabelian groups of order 2^n that have an element r of order 2^{n-1} :

- 1. The dihedral group $D_{2^{n-1}} = \langle r, s | r^{2^{n-1}} = s^2 = 1, srs = r^{-1} \rangle$.
- 2. The dicyclic group $\text{Dic}_{2^{n-1}} = \langle r, s | r^{2^{n-1}} = s^4 = 1, r^{2^{n-2}} = s^2, rsr = s \rangle$.
- 3. The semidihedral group $SD_{2^{n-1}} = \langle r, s | r^{2^{n-1}} = s^2 = 1, srs = r^{2^{n-2}-1} \rangle$.
- 4. The semiabelian group $SA_{2^{n-1}} = \langle r, s | r^{2^{n-1}} = s^2 = 1$, $srs = r^{2^{n-2}+1} \rangle$.

As we did before, we can ask:

what groups do these presentations describe when 2n is not a power of 2?

More fun group theory puzzles

Are these Cayley graphs of groups?

If so, what groups are they?

Since there is an element of order 8, there are only six possibilities:

$$C_{16}, C_8 \times C_2, D_8, SD_8, SA_8, Q_{16}.$$

More fun group theory puzzles

Are these Cayley graphs of groups?

If so, what groups are they?

Since there is an element of order 16, there are only six possibilities:

 C_{32} , $C_{16} \times C_2$, D_{16} , SD_{16} , SA_{16} , Q_{32} .

More fun group theory puzzles

Are these Cayley graphs of groups?

If so, what groups are they?

Since there is an element of order 16, there are only six possibilities:

 C_{32} , $C_{16} \times C_2$, D_{16} , SD_{16} , SA_{16} , Q_{32} .