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Generalizing the quaternion group
Last lecture, we started with the quaternion group, and using a dihedral group
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we constructed the dicyclic and diquaternion groups:
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Generalizing the dihedral groups
We could have constructed the dicyclic groups by starting with a Cayley graph of
Dn = 〈r , f 〉.

Then, we could remove the blue arcs and investigate how they can be rewired.

But what if we kept those, but rewired the inner length-n red cycle?
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In other words, we want to construct a group G that
has an element r of order n
has an element s 6∈ 〈r〉 of order 2.

Equivalently, what can we replace the relation srs = rn−1 with? That is,

G =
〈
r , s | rn = 1, s2 = 1, ???

〉
.
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Semidihedral groups

If n is a power of 2, we can replace srs = rn−1 with srs = rn/2−1.
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Definition
For each power of two, the semidihedral group of order 2n is defined by

SD2n−1 =
〈
r , s | r2n−1

= s2 = 1, srs = r2
n−2−1〉.

Do you see another way we can rewire these inner red arrows?
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Semiabelian groups

Still assuming n is a power of 2, let’s replace srs = rn/2−1 with srs = rn/2+1.
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Definition
For each power of two, the semiabelian group of order 2n is defined by

SA2n−1 =
〈
r , s | r2n−1

= s2 = 1, srs = r2
n−2+1〉.

Do you see another way we can rewire these inner red arrows?
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One more rewiring
Of course, there’s one more way that we can rewire the dihedral group. . .

Here is its Cayley graph and cycle graph.
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When this group has order 2n, its presentation is

C2n−1 × C2 =
〈
r , s | r2n−1

= s2 = 1, srs = r
〉
.

Remarkably, this and the other three we’ve seen are the only possibilities:

srs = r−1 (dihedral), srs = r2
n−2−1 (semidihedral), srs = r2

n−2+1 (semiabelian).
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Dihedral vs. semidihedral vs. semiabelian groups

In other words, there are exactly 4 groups of order 2n with both:

an element r of order 2n−1

an element s 6∈ 〈r〉 of order 2.

Let’s compare the cycle graphs of the three non-abelian groups from this list:
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Remark
The semiabelian group SAn and the abelian group Cn × C2 have the same orbit structure!

This surprising fact has profound consequences that we’ll see when we study subgroups.

M. Macauley (Clemson) Lecture 2.8: Semidihedral & semiabelian groups Visual Algebra 7 / 12

mailto:macaule@clemson.edu


Dihedral vs. semidihedral vs. semiabelian groups

Compare and contrast representations of the dihedral and semidihedral group:

Dn ∼=
〈[
ζn 0
0 ζn

]
,

[
0 1
1 0

]〉
, SDn ∼=

〈[
ζn 0
0 −ζn

]
,

[
0 1
1 0

]〉
, ζn = e2πi/n.

Now, compare and contrast those of the abelian and semiabelian group:

Cn × C2 ∼=
〈[
ζn 0
0 ζn

]
,

[
0 1
1 0

]〉
, SAn ∼=

〈[
ζn 0
0 −ζn

]
,

[
0 1
1 0

]〉
.

Mnemonic: “semi-” = “halfway around unit circle” = ζn/2 = −1.

The groups SDn and SAn only exist when n = 2m. In this case, we also have

Q2m+1 = Dicn ∼=
〈[
ζn 0
0 ζn

]
,

[
0 1
−1 0

]〉
,

called the generalized quaternion group.

Note that for any n ∈ N, the matrices above generate some group.

Exploratory question
What groups do the above representations give if, e.g., n is odd, or not a power of 2?

M. Macauley (Clemson) Lecture 2.8: Semidihedral & semiabelian groups Visual Algebra 8 / 12

mailto:macaule@clemson.edu


Non-abelian groups of order 2n

We’ll understand the following better when we study semi-direct products of groups.

Theorem

There are exactly four nonabelian groups of order 2n that have an element r of order 2n−1:

1. The dihedral group D2n−1 =
〈
r , s | r2n−1

= s2 = 1, srs = r−1
〉
.

2. The dicyclic group Dic2n−1 =
〈
r , s | r2n−1

= s4 = 1, r2
n−2

= s2, rsr = s
〉
.

3. The semidihedral group SD2n−1 =
〈
r , s | r2n−1

= s2 = 1, srs = r2
n−2−1〉.

4. The semiabelian group SA2n−1 = 〈r , s | r2n−1
= s2 = 1, srs = r2

n−2+1
〉
.

C16×C2 SD16
SA16 D16

As we did before, we can ask:

what groups do these presentations describe when 2n is not a power of 2?
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More fun group theory puzzles

Are these Cayley graphs of groups?

If so, what groups are they?

Since there is an element of order 8, there are only six possibilities:

C16, C8 × C2, D8, SD8, SA8, Q16.

M. Macauley (Clemson) Lecture 2.8: Semidihedral & semiabelian groups Visual Algebra 10 / 12

mailto:macaule@clemson.edu


More fun group theory puzzles

Are these Cayley graphs of groups?

If so, what groups are they?

Since there is an element of order 16, there are only six possibilities:

C32, C16 × C2, D16, SD16, SA16, Q32.
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More fun group theory puzzles
Are these Cayley graphs of groups?
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If so, what groups are they?

Since there is an element of order 16, there are only six possibilities:

C32, C16 × C2, D16, SD16, SA16, Q32.
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