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Revisiting direct products
Let A,B be groups with identity elements 1A and 1B . Suppose we have a

Cayley graph of A with generators a1, . . . , ak ,

Cayley graph of B with generators b1, . . . , b`.

We can create a Cayley graph for A× B, by taking

Vertex set: {(a, b) | a ∈ A, b ∈ B},

Generators: (a1, 1B), . . . , (ak , 1B) and (1A, b1), . . . , (1A, b`).

C3 × C3 C3 × C2 C2 × C2 × C2

Remark
“A-arrows” are independent of “B-arrows.” Algebraically, this means

(a, 1B) ∗ (1A, b) = (a, b) = (1A, b) ∗ (a, 1B).
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Revisiting direct products

Remark
Just because a group is not written with × does not mean that there is not secretly a
direct product structure lurking behind the scenes.

We have already seen that V4 ∼= C2 × C2, and that C6 ∼= C3 × C2.

However, sometimes it is even less obvious.

Two of the following three groups secretly have a direct product structure.

(And it’s probably not the two you think.)
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The “inflation method” for constructing direct products

Semidirect products are a more general construction than the direct product.

They can be thought of as a “twisted” version of the direct product.

To motivate this, consider the following “inflation method” for constructing the Cayley
graph of a direct product:

1

s

Start with a
copy of B = C2

1 r r2 r3

s rs r2s r3s

Inflate each node, insert A = C4 in each
and connect corresponding nodes with edges

(1,1) (r ,1) (r2,1) (r3,1)

(1,s) (r ,s) (r2,s) (r3,s)

“pop” each inflated node to get the
direct product C4 × C2

Consider this process, but with the red arrows reversed in the bottom inflated node.

This would result in a Cayley graph for the group D4.

We say that D4 is the semidirect product of C4 and C2, written D4 ∼= C4 o C2.
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Rewirings of Cayley graphs

Reversing the red arrows worked is because it was a structure-preserving rewiring.

Formally, this is an automorphism, which is an isomorphism from a group to itself.

We’ll learn more about this when we study homomorphisms. Just know that it’s a bijection

ϕ : G −! G

satisfying some extra properties.

There are two ways to describe a rewiring:

fix the position of the nodes and rewire the edges

fix the position of the edges and relabel the nodes.

This is best seen with an example:

1

r r2

r3

Id

Cayley graph of C4

1

r r2

r3

ϕ

edges rewired

1

r3 r2

r

ϕ

nodes relabeled

1

r r2

r3

non-rewiring

The graph on the right isn’t allowed because it doesn’t preserve the algebraic structure.
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The “inflation method” for constructing semidirect products

Semidirect products can be constructed via the “inflation process” for A× B, but insert
ϕ-rewired copies of the Cayley graph for A into inflated nodes of B.

Let’s construct AoB for A = C4 and B = C2, with the rewiring ϕ from the previous slide.

1

s

Start with a
copy of B = C2

1 r r2 r3
Id

ϕ
s rs r2s r3s

Inflate each node, insert rewired versions
of A = C4, and connect corresponding nodes

1 r r2 r3

s rs r2s r3s

“pop” each inflated node to get the
semidirect product C4 oϕ C2 ∼= D4

In the middle graph, each inflated node of B = C2 = 〈s〉 is labeled with a re-wiring.

Formally, this is a just map

θ : C2 −! Aut(C4), θ(g) =

{
Id g = 1
ϕ g = s,

where θ(g) specifies which re-wiring gets put into the inflated node g of C2.
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Semidirect products

There are strong restrictions for inserting rewirings of the Cayley graph of A into B.

The map θ must be a structure-preserving map, called a homomorphism.

If we stick a ϕ-rewiring into the inflated node b ∈ B, then we must insert a ϕ2-rewiring
into node b2 ∈ B, and so on.

Definition (informal)

Consider groups A,B, and a structure-preserving map

θ : B −! Aut(A)

to the set of rewirings of A. The semidirect product Aoθ B, is constructed by:

inflating the nodes of the Cayley graph of B, [mnemonic: B for “ballooon”]

inserting a θ(b)-rewiring of the Cayley graph A into node b of B,

For each edge bewteen B-nodes, connect corresponding pairs of A-nodes with that
edge.
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Semidirect products

Key point
For groups A,B and map

θ : B −! Aut(A),

the image θ(b) can be thought of as “which rewiring node b ∈ B gets label with”.

Any group A always has a trivial rewiring.

Remark
For the trivial map θ : B −! Aut(A) sending everything to the identity rewiring

Aoθ B = A× B.

For any n, there is a rewiring ϕ of Cn = 〈r〉 that “reverses all of the r -arrows”.

The semidirect product of Cn and C2 = {1, s}, with respect to

θ : C2 −! Aut(Cn), θ(g) =

{
Id g = 1
ϕ g = s,

is Dn ∼= Cn oθ C2.
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Semidirect products

Reasons for introducing semidirect products this early
it helps us understand a new way to construct groups

it helps us understand the structure of some groups we’ve already seen

thinking about what works in this process and why, helps us gain a more holistic
understanding about group theory

it will be easier to learn advanced concepts such as automorphisms if we get a preview
of them in advance, and gain intutition

Proposition
The set of rewirings of a Cayley graph of G forms a group, denoted Aut(G).

Moreover, this group does not depend on the Cayley graph, but on the group itself.
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Rewirings and the automorphism group
There are four rewirings (i.e., automorphisms) of the Cayley graph of C5 = 〈a〉.

Every rewiring can be realized by iterating the “doubling map” ϕ : C5 ! C5 that replaces
each instance of a with a2, i.e., a length-k path with a length-2k path.

1

a

a2

a3

a4

Id = ϕ0

starting graph

1

a

a2

a3

a4

ϕ

a1 7! (a1)2=a2

1

a

a2

a3

a4

ϕ2

a2 7! (a2)2=a4

1

a

a2

a3

a4

ϕ3

a4 7! (a4)2=a3

Notice that the rewirings form a group:

Aut(C5) =
{
1, ϕ, ϕ2, ϕ3

} ∼= C4

1

ϕ ϕ2

ϕ3

Aut(C5)

Remark
For any group G , the set Aut(G) of rewirings forms a group, called its automorphism group.
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The automorphism group of Cn
Each automorphism is defined by where it sends a generator: r 7! rk .

“each red arrow gets multiplied by k”

The group Aut(Cn) is isomorphic to the group with operation multiplication modulo n:

Un :=
{
k | 0 < k < n, gcd(n, k) = 1

}
.

Example:

Aut(C7) ∼= U7 = {1, 2, 3, 4, 5, 6} = 〈3〉 ∼= C6

20 = 1, 21 = 2, 22 = 4, 23 = 1

30 = 1, 31 = 3, 32 = 2

33 = 6, 34 = 4, 35 = 5

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

2

4

6

1

3

5

3

6

2

5

1

4

4

1

5

2

6

3

5

3

1

6

4

2

6

5

4

3

2

1

Since U7 = 〈3〉, the re-wirings of C7 are generated by the “tripling map” r
ϕ
7−! r3.

1ϕ0

C7 = 〈r〉

1ϕ

r1 7! (r1)3= r3

1ϕ2

r3 7! (r3)3= r2

1ϕ3

r2 7! (r2)3= r6

1ϕ4

r6 7! (r6)3= r4

1ϕ5

r4 7! (r4)3= r5
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An example: the automorphism group of C7

Aut(C7) ∼= U7 = 〈3〉 1

rr2

r3

r4

r5
r6

Id=σ1

“tripling map” σ3

U7 = 〈3〉
1

rr2

r3

r4

r5
r6

ϕ
“doubling map” σ2

32 ≡ 2 (mod 7)
1

rr2

r3

r4

r5
r6

ϕ2

“sextupling map” σ6

33 ≡ 6 (mod 7)
1

rr2

r3

r4

r5
r6

ϕ3

“quadrupling map” σ4

34 ≡ 4 (mod 7)
1

rr2

r3

r4

r5
r6

ϕ4
“quintupling map” σ5

35 ≡ 5 (mod 7)
1

rr2

r3

r4

r5
r6

ϕ5
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