Visual Algebra

Lecture 2.10: Examples of semidirect products

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences
Clemson University
South Carolina, USA
http://www.math.clemson.edu/~macaule/

Quick recap

Definition (informal)

Consider groups A, B, and a structure-preserving map

$$\theta \colon B \longrightarrow \operatorname{Aut}(A)$$

to the group of rewirings of A. The semidirect product $A \bowtie_{\theta} B$, is constructed by:

- inflating the nodes of the Cayley graph of *B*, [mnemonic: *B* for "balloon"]
- \blacksquare inserting a $\theta(b)$ -rewiring of the Cayley graph of A into node b of B,
- For each edge bewteen *B*-nodes, connect corresponding pairs of *A*-nodes.

Start with a copy of $B = C_2$

Inflate each node, insert rewired versions of $A = C_4$, and connect corresponding nodes

"pop" each inflated node to get the semidirect product $C_4 \rtimes_{\varphi} C_2 \cong D_4$

One more recap from the last video

There are four rewirings (i.e., automorphisms) of the Cayley graph of $C_5 = \langle a \rangle$.

Every rewiring can be realized by iterating the "doubling map" $\varphi \colon C_5 \to C_5$ that replaces each instance of a with a^2 , i.e., a length-k path with a length-2k path.

The rewirings form the automorphism group:

$$Aut(C_5) = \{1, \varphi, \varphi^2, \varphi^3\} \cong C_4$$

The 1st semidirect product of C_5 and C_4

Let's construct a semidirect product $C_5 \rtimes_{\theta_1} C_4$:

The 2^{nd} semidirect product of C_5 and C_4

Let's now construct a different semidirect product, $C_5 \rtimes_{\theta_2} C_4$:

Rewiring edges vs. relabeling nodes

The 3rd semidirect product of C_5 and C_4

Let's construct another semidirect product $C_5 \rtimes_{\theta_3} C_4$:

The direct product of C_5 and C_4

Let's now construct the "trivial" semidirect product, $C_5 \rtimes_{\theta_0} C_4 = C_5 \times C_4$:

Semidirect products

Questions

- does our semidirect product construction actually yield a group?
- (what would happen if we try C_5 and C_2 ?)
- when do 2 labeling maps give isomorphic semidirect products?
- is the semidirect product commutative?

not a group

Which groups did we encounter when constructing $C_5 \rtimes_{\theta_k} C_4$, for k = 1, 2, 3?

It turns out that there are only three nonabelian groups of order 20:

- 1. the dihedral group D_{10}
- 2. the dicyclic group Dic₁₀
- 3. a 1D "affine group" $\mathsf{AGL}_1(\mathbb{Z}_5) \cong \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} : a, b \in \mathbb{Z}_5, \ a \neq 0 \right\} \leq \mathsf{GL}_2(\mathbb{Z}_5).$

We'll answer these questions and more later, when we study automorphisms.

What are the orders of the elements in these groups?

Four groups we've seen of order 16

Semidirect products of C_8 and C_2

There are four rewirings of the Cayley graph $C_8 = \langle r \rangle$:

All three non-trivial rewirings have order 2:

$$r \xrightarrow{\sigma} r^3 \xrightarrow{\sigma} (r^3)^3 = r^9 = r$$
, $r \xrightarrow{\alpha} r^5 \xrightarrow{\alpha} (r^5)^5 = r^{25} = r$, $r \xrightarrow{\delta} r^7 \xrightarrow{\delta} (r^7)^7 = r^{49} = r$.

There are four labeling maps $\theta_k : C_2 \longrightarrow Aut(C_8) \cong V_4$:

$$s \stackrel{\theta_1}{\longmapsto} \mathsf{Id}$$

$$s \stackrel{\theta_3}{\longmapsto} c$$

$$s \stackrel{\theta_5}{\longmapsto} \alpha$$

$$s \stackrel{\theta_7}{\longmapsto} \delta$$

The four semidirect products $C_8 \rtimes_i C_2$

Semidirect products of C_{2^m} and C_2

Theorem

For each $n = 2^m$, there are four distinct semidirect products of C_n with C_2 :

1. $C_n \rtimes_{\theta_1} C_2 \cong C_n \times C_2$,

3. $C_n \rtimes_{\theta_{\delta}} C_2 \cong D_n$,

2. $C_n \rtimes_{\theta_{\alpha}} C_2 \cong SA_n$,

4. $C_n \rtimes_{\theta_{\sigma}} C_2 \cong SD_n$,

where the rewirings are maps $C_{2^m} \rightarrow C_{2^m}$ defined by

$$r \overset{\theta_1}{\longmapsto} r, \qquad r \overset{\theta_\sigma}{\longmapsto} r^{2^{m-1}-1}, \qquad r \overset{\theta_\alpha}{\longmapsto} r^{2^{m-1}+1}, \qquad r \overset{\theta_\delta}{\longmapsto} r^{-1}.$$

The reason why this holds is that $\theta(b)$ in $\operatorname{Aut}(C_{2^m})$ must be an order of order 1 or 2, because $\theta(b^2) = \theta(1) = \operatorname{Id}$.

There are only three elements of order 2 in the group U_{2^m} , due to the following result from number theory.

Lemma

For any $n \ge 3$, the quadratic equation

$$x^2 \equiv 1 \pmod{2^n}$$

has exactly four distinct solutions, ± 1 and $2^{n-1} \pm 1$.

The smallest nonabelian group of odd order: $C_7 \rtimes_{\theta} C_3$

There are 6 rewirings (automorphisms) of C_7 :

A surprising fact

We know that we can construct the dihedral group D_6 as a semidirect product $C_6 \rtimes_{\theta} C_2$.

But it also secretly decomposes as a direct product!

To see this, let's draw a Cayley graph with a nonstandard generating set, $D_6 = \langle r^2, r^3, f \rangle$.

It is apparent that $D_6 \cong D_3 \times \mathbb{Z}_2 = \langle (r, 0), (f, 0), (0, 1) \rangle!$

Question: How does this generalize to larger dihedral groups?

We'll understand this better later when we study subgroups and automorphisms.